In this paper,we study a kind of the delayed SEIQR infectious disease model withthe quarantine and latent, and get the threshold value which determines the globaldynamics and the outcome of the disease. The model has a disease-free equilibriumwhich is unstable when the basic reproduction number is greater than unity.At thesame time, it has a unique endemic equilibrium when the basic reproduction numberis greater than unity. According to the mathematical dynamics analysis, we showthat disease-free equilibrium and endemic equilibrium are locallyasymptotically stable byusing Hurwitz criterion and they are globally asymptotically stable by using suitableLyapunov functions for any Besides,the SEIQR model with nonlinear incidence rate is studied, and thethat the basic reproduction number is a unity can be found out. Finally, numerical simulations are performed to illustrate and verify theconclusions that will be useful for us to control the spread of infectious diseases.Meanwhile, thewill effect changing trends ofin system (1),which is obvious in simulations. Here, we takeas an example to explain that.

X. B. Liu and L. J. Yang, “Stability Analysis of an SEIQV Epidemic Model with Saturated Incidence Rate,” Nonlinear Analysis: Real World Applications, Vol. 13, No. 6, 2012, pp. 2671-2979.

M. Y. Li, J. R. Graef, L. C. Wang and J. Karsai, “Global Dynamics of a SEIR Model with Varying Total Population Size,” Mathematical Biosciences, Vol. 160, No. 2, 1999, pp. 191-213. http://dx.doi.org/10.1016/S0025-5564(99)00030-9

J. Zhang and Z. E. Ma, “Global Dynamics of an SEIR Epidemic Model with Saturating Contact Rate,” Mathematical Biosciences, Vol. 185, No. 1, 2003, pp. 15-32. http://dx.doi.org/10.1016/S0025-5564(03)00087-7

G. H. Li and Z. Jin, “Global Stability of a SEIR Epidemic Model with Infectious Force in Latent Infected and Immune Period,” Chaos, Solitons and Fractals, Vol. 25, No. 5, 2005, pp. 1177-1184. http://dx.doi.org/10.1016/j.chaos.2004.11.062

B. K. Mishra and N. Jha, “SEIQRS Model for the Transmission of Malicious Objects in Computer Network,” Applied Mathematical Modelling, Vol. 34, No. 3, 2010, pp. 710-715. http://dx.doi.org/10.1016/j.apm.2009.06.011

Y. N. Kyrychkoa and K. B. Blyussb, “Global Properties of a Delayed SIR Model with Temporary Immunity and Nonlinear Incidence Rate,” Nonlinear Analysis: Real World Applications, Vol. 6, No. 3, 2005, pp. 495-507. http://dx.doi.org/10.1016/j.nonrwa.2004.10.001

K. L. Cooke and P. van den Driessche, “Analysis of an SEIRS Epidemic Model with Two Delays,” Journal of Mathematical Biology, Vol. 35, No. 2, 1996, pp. 240-260. http://dx.doi.org/10.1007/s002850050051

R. Xu, Z. E. Ma and Z. P. Wang, “Global Stability of a Delayed SIRS Epidemic Model with Saturation Incidence and Temporary Immunity,” Computers and Mathematics with Applications, Vol. 59, No. 9, 2010, pp. 3211-3221. http://dx.doi.org/10.1016/j.camwa.2010.03.009

Y. Enatsu, E. Messina, Y. Muroya, Y. Nakata, E. Russo and A. Vecchio, “Stability Analysis of Delayed SIR Epidemic Models with a Class of Nonlinear Incidence Rates,” Applied Mathematics and Computation, Vol. 218, No. 9, 2012, pp. 5327-5336. http://dx.doi.org/10.1016/j.amc.2011.11.016

F. P. Zhang, Z. Z. Li and F. Zhang, “Global Stability of an SIR Epidemic Model with Constant Infectious Period,” Applied Mathematics and Computation, Vol. 199, No. 1, 2008, pp. 285-291. http://dx.doi.org/10.1016/j.amc.2007.09.053

S. J. Gao, L. S. Chen and Z. D. Teng, “Pulse Vaccination of an SEIR Epidemic Model with Time Delay,” Nonlinear Analysis: Real World Applications, Vol. 9, No. 2, 2008, pp. 599-607. http://dx.doi.org/10.1016/j.nonrwa.2006.12.004

Z. Zhao, L. S. Chen and X. Y. Song, “Impulsive Vaccination of SEIR Epidemic Model with Time Delay and Nonlinear Incidence Rate,” Mathematics and Computers in Simulation, Vol. 79, No. 3, 2008, pp. 500-510. http://dx.doi.org/10.1016/j.matcom.2008.02.007

R. Xu and Z. E. Ma, “Global Stability of a Delayed SEIRS Epidemic Model with Saturation Incidence Rate,” Nonlinear Dynamics, Vol. 61, No. 1-2, 2010, pp. 229239. http://dx.doi.org/10.1007/s11071-009-9644-3

X. B. Zhang, H. F. Huo, H. Xiang and X. Y. Meng, “Two Profitless Delays for the SEIRS Epidemic Disease Model with Nonlinear Incidence and Pulse Vaccination,” Applied Mathematics and Computation, Vol. 186, No. 1, 2007, pp. 516-529. http://dx.doi.org/10.1016/j.amc.2006.07.124

Y. Z. Pei, S. Y. Liu, S. J. Gao, S. P. Li and C. G. Li, “A Delayed SEIQR Epidemic Model with Pulse Vaccination and the Quarantine Measure,” Computers and Mathematics with Applications, Vol. 58, No. 1, 2009, pp. 135-145.

H. M. Wei, X. Z. Li and M. Martcheva, “An Epidemic Model of a Vector-Borne Disease with Direct Transmission and Time Delay,” Journal of Mathematical Analysis and Applications, Vol. 342, No. 2, 2008, pp. 895-908.