All Title Author
Keywords Abstract


Strategies of polyhydroxyalkanoates modification for the medical application in neural regeneration/nerve tissue engineering

DOI: 10.4236/abb.2013.46097, PP. 731-740

Keywords: PHA, Modification, Neural Regeneration, Nerve Tissue Engineering

Full-Text   Cite this paper   Add to My Lib

Abstract:

Neural regeneration was once considered to be impossible, especially in the central nervous system where neural regeneration comprise the generation of new neurons, glia, axons, myelin, and synapses. Until recently, neural stem cells/neural progenitor cells (NSCs/NPCs) were identified from various areas of brain and brought hopes to the neural repair and regeneration. Tissue engineering has revolutionized the current neural regeneration technology and it has become a pioneering interdisciplinary field in the areas of biomedical research. Polyhydoxyalkanoate (PHA) as one of biodegradable material has been successfully used as tissue engineering materials. It has also been applied in nerve tissue engineering due to the high biocompatibility and low cytotoxicity. Over the past 10 years, different kinds of modification strategies have been undertaken to improve the properties of PHA to fit the requirements from various fields. Several members of PHA family have been attempted for neural regeneration. This article reviewed the recent modification strategies for improving the properties of PHA and highlighted the pioneer applications in neural regeneration.

References

[1]  Johansson, C.B., Momma, S., Clarke, D.L., Risling, M., Lendahl, U. and Frisén, J. (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell, 96, 25-34. doi:10.1016/S0092-8674(00)80956-3
[2]  Widenfalk, J., Lundstromer, K., Jubran, M., Brene, S. and Olson, L. (2001) Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. Journal of Neuroscience, 21, 34573475.
[3]  Cai, D., Shen, Y., De Bellard, M., Tang, S. and Filbin, M.T. (1999) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron, 22, 89-101. doi:10.1016/S0896-6273(00)80681-9
[4]  Miya, D., Giszter, S., Mori, F., Adipudi, V., Tessler, A. and Murray, M. (1997) Fetal transplants after the development of function after spinal cord transection in newborn rats. Journal of Neuroscience, 17, 4856-4872.
[5]  Diener, P.S. and Bregman, B.S. (1998) Fetal spinal cord transplants support growth of supraspinal and segmental projections after cervical spinal cord hemisection in the neonatal rat. Journal of Neuroscience, 18, 779-793.
[6]  Tsuji, O., Miura, K., Fujiyoshi, K., Momoshima, S., Nakamura, M. and Okano, H. (2011) Cell therapy for spinal cord injury by neural stem/progenitor cells derived from iPS/ES cells. Neurotherapeutics, 8, 668-676. doi:10.1007/s13311-011-0063-z
[7]  Arias-Carrion, O. and Yuan, T.F. (2009) Autologous neural stem cell transplantation: A new treatment option for Parkinson’s disease? Med Hypotheses, 73, 757-759. doi:10.1016/j.mehy.2009.04.029
[8]  Lepore, A.C. and Fischer, I. (2005) Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Experimental Neurology, 194, 230-242. doi:10.1016/j.expneurol.2005.02.020
[9]  Lepore, A.C., Han, S.S., Tyler-Polsz, C.J., Cai, J., Rao, M.S. and Fischer, I. (2004) Differential fate of multipotent and lineage-restricted neural precursors following transplantation into the adult CNS. Neuron Glia Biology, 1, 113-126. doi:10.1017/S1740925X04000213
[10]  Lepore, A.C., Neuhuber, B., Connors, T.M., Han, S.S., Liu, Y., Daniels, M.P., Rao, M.S. and Fischer, I. (2006) Longterm fate of neural precursor cells following transplantation into developing and adult CNS. Neuroscience, 142, 287-304. doi:10.1016/j.neuroscience.2005.12.067
[11]  Thonhoff, J.R., Lou, D.I., Jordan, P.M., Zhao, X. and Wu, P. (2008) Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Research, 1187, 42-51. doi:10.1016/j.brainres.2007.10.046
[12]  Xiong, Y., Zeng, Y.S., Zeng, C.G., Dum, B.L., He, L.M., Quan, D.P., Zhang, W., Wang, J.M., Wu, J.L., Li, Y. and Li, J. (2009) Synaptic transmission of neural stem cells seeded in 3-dimensional PLGA scaffolds. Biomaterials, 30, 3711-3722. doi:10.1016/j.biomaterials.2009.03.046
[13]  Park, K.I., Teng, Y.D. and Snyder, E.Y. (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnology, 20, 1111-1117. doi:10.1038/nbt751
[14]  Chen, G.Q. and Q. Wu, (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26, 6565-6578. doi:10.1016/j.biomaterials.2005.04.036
[15]  Steinbuchel, A. and Valentin, H.E. (1995) Diversity of bacterial polyhydroxy-alkanoic acids. FEMS Microbiology Letters, 128, 219-228. doi:10.1111/j.1574-6968.1995.tb07528.x
[16]  Wu, T.P. Hu, P., Zhang, X.B., Li, W. and Chen, F. (2004) Biocompatibility of modified poly-beta-hydroxybutyric acid to adrenocortical cells. Journal of Wuhan University of Technology-Materials Science Edition, 19, 38-40. doi:10.1007/BF03000164
[17]  Nebe, B., Forster, C., Pom-merenke, H., Fulda, G., Behrend, D., Bernewski, U., Schmitz, K.P. and Rychly, J. (2001) Structural alterations of adhesion mediating components in cells cultured on poly bhydroxybutyric acid. Biomaterials, 22, 2425-2434. doi:10.1016/S0142-9612(00)00430-0
[18]  Shishatskaya, E.I. and Volova, T.G. (2004) A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures. Journal of Materials Science: Materials in Medicine, 15, 915-923. doi:10.1023/B:JMSM.0000036280.98763.c1
[19]  Kuppan, P., Vasanthan, K.S., Sundaramurthi, D., Krishnan, U.M. and Sethuraman, S. (2011) Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: Effects of topography, mechanical, and chemical stimuli. Biomacromolecules, 12, 31563165. doi:10.1021/bm200618w
[20]  Kenar, H., Kocabas, A., Aydinli, A. and Hasirci, V. (2008) Chemical and topographical modification of PHBV surface to promote osteoblast alignment and confinement. Journal of Biomedical Materials Research: Part A, 85, 1001-1010. doi:10.1002/jbm.a.31638
[21]  Doi, Y., Kitamura, S. and Abe, H. (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co3-hydroxyhexanoate). Macromolecules, 28, 4822-4828. doi:10.1021/ma00118a007
[22]  Qu, X.H., Wu, Q., Liang, J., Zou, B. and Chen, G.Q. (2006) Effect of 3-hydroxyhexanoate content in poly(3hydroxybutyrate-co-3-hydroxyhexanoate) on in vitro growth and differentiation of smooth muscle cells. Biomaterials, 27, 2944-2950. doi:10.1016/j.biomaterials.2006.01.013
[23]  Wang, Y.W., Yang, F., Wu, Q., Cheng, Y.C., Yu, P.H., Chen, J. and Chen, G.Q. (2005) Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast. Biomaterials, 26, 755-761. doi:10.1016/j.biomaterials.2004.03.023
[24]  Wang, Y., Bian, Y.Z., Wu, Q. and Chen, G.Q. (2008) Evaluation of three-dimensional scaffolds prepared from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials, 29, 2858-2868. doi:10.1016/j.biomaterials.2008.03.021
[25]  Wang, Y.W., Wu, Q. and Chen, G.Q. (2004) Attachment, proliferation and differentiation of osteoblasts on random biopolyesterpoly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials, 25, 669-675. doi:10.1016/S0142-9612(03)00561-1
[26]  Yang, M., Zhu, S., Chen, Y., Chang, Z., Chen, G., Gong, Y., Zhao, N. and Zhang, X. (2004) Studies on bone marrow stromal cells affinity of poly (3-hydroxybutyrate-co3-hydroxyhexanoate). Biomaterials, 25, 1365-1373. doi:10.1016/j.biomaterials.2003.08.018
[27]  Xu, X.Y., Li, X.T., Peng, S.W., Xiao, J.F., Liu, C., Fang, G., Chen, K.C. and Chen, G.Q. (2010) The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials, 31, 3967-3975. doi:10.1016/j.biomaterials.2010.01.132
[28]  Liang, Y.S., Zhao, W. and Chen, G.Q. (2008) Study on the biocompatibility of novel terpolyester poly (3-hydroxybtyrate-co-3-hydroxyvalerate-co-3-hydroxy-hexanoate). Journal of Biomedical Materials Research: Part A, 87, 441-449. doi:10.1002/jbm.a.31801
[29]  Hu, Y.J., Wei, X., Zhao, W., Liu, Y.S. and Chen, G.Q. (2009) Biocompatibility of poly(3-hydroxybutyrate-co-3hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells. Acta Bio-materialia, 5, 1115-1125. doi:10.1016/j.actbio.2008.09.021
[30]  Yang, X., Zhao, K. and Chen, G.Q. (2002) Effect of surface treatment on the biocompatibility of microbial polyhydroxyalkanoates. Biomaterials, 23, 1391-1397. doi:10.1016/S0142-9612(01)00260-5
[31]  Shen, F., Zhang, E. and Wei, Z. (2010) In vitro blood compatibility of poly (hydroxybutyrate-co-hydroxyhexanoate) and the infuence of surface modifcation by alkali treatment. Materials Science and Engineering C, 30, 369375. doi:10.1016/j.msec.2009.12.003
[32]  Ma, Z., Gao, C., Gong, Y. and Shen, J. (2003) Chondrocyte behaviors on poly-L-lactic acid (PLLA) membranes containing hydroxyl, amide or carboxyl groups. Biomaterials, 24, 3725-3730. doi:10.1016/S0142-9612(03)00247-3
[33]  Shangguan, Y.Y., Wang, Y.W., Wu, Q. and Chen, G.Q. (2006) The mechanical properties and in vitro biodegradation and biocompatibility of UV-treated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Biomaterials, 27, 23492357. doi:10.1016/j.biomaterials.2005.11.024
[34]  Ren, Y., Wang, C. and Qiu, Y. (2008) Aging of surface properties of ultra high modulus polyethylene fibers treated with He/O2 atmospheric pressure plasma jet. Surface and Coatings Technology, 202, 2670-2676. doi:10.1016/j.surfcoat.2007.09.043
[35]  Benavente, J. and Vazquez, M.I. (2004) Effect of age and chemical treatments on characteristic parameters for active and porous sublayers of polymeric composite membranes. Journal of Colloid and Interface Science, 273, 547-555. doi:10.1016/j.jcis.2003.11.023
[36]  Lee, I.S., Kwon, O.H., Meng, W., Kang, I.K. and Ito, Y. (2004) Nanofabrication of microbial polyester by electrospinning promotes cell attachment. Macromolecular Research, 12, 374-378. doi:10.1007/BF03218414
[37]  Wang, Y.W., Wu, Q. and Chen, G.Q. (2005) Gelatin blending improves the performance of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films for biomedical application. Biomacromolecules, 6, 566-571. doi:10.1021/bm049342d
[38]  Dong, C.L., Li, S.Y., Wang, Y., Dong, Y., Tang, J.Z., Chen, J.C. and Chen, G.Q. (2012) The cytocompatability of polyhydroxyalkanoates coated with a fusion protein of PHA repressor protein (PhaR) and Lys-Gln-Ala-GlyAsp-Val (KQAGDV) polypeptide. Biomaterials, 33, 2593-2599. doi:10.1016/j.biomaterials.2011.12.020
[39]  You, M., Peng, G., Li, J., Ma, P., Wang, Z., Shu, W., Peng, S. and Chen, G.Q. (2011) Chondrogenic differenttiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials, 32, 2305-2313. doi:10.1016/j.biomaterials.2010.12.009
[40]  Dong, Y., Li, P., Chen, C.B., Wang, Z.H., Ma, P. and Chen, G.Q. (2010) The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials, 31, 8921-8930. doi:10.1016/j.biomaterials.2010.08.001
[41]  Zhao, K., Deng, Y. and Chen, G.Q. (2003) Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates. Biochemical Engineering Journal, 16, 115-123. doi:10.1016/S1369-703X(03)00029-9
[42]  Zheng, Z., Bei, F.F., Tian, H.L. and Chen, G.Q. (2005) Effects of crystallization of polyhydroxyalkanoate blend on surface physicochemical properties and interactions with rabbit articular cartilage chondrocytes. Biomaterials, 26, 3537-3548. doi:10.1016/j.biomaterials.2004.09.041
[43]  Li, J., Yun, H., Gong, Y., Zhao, N. and Zhang, X. (2005) Effects of surface modification of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) on physicochemical properties and on interactions with MC3T3-E1 cells. Journal of Biomedical Materials Research, 75, 985-998. doi:10.1002/jbm.a.30504
[44]  Wang, Y.W., Wu, Q. and Chen, G.Q. (2003) Reduced mouse fibroblast cell growth by increased hydrophilicity of microbial polyhydroxyalkanoates via hyaluronan coating. Biomaterials, 24, 4621-4629. doi:10.1016/S0142-9612(03)00356-9
[45]  Qu, X.H., Wu, Q., Liang, J., Qu, X., Wang, S.G. and Chen, G.Q. (2005) Enhanced vascular-related cellular affinity on surface modified copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials, 26, 6991-7001. doi:10.1016/j.biomaterials.2005.05.034
[46]  Li, X.T., Sun, J., Chen, S. and Chen, G.Q. (2008) In Vitro investigation of maleated poly(3-hydroxybutyrate-co-3hydroxyhexanoate) for its biocompatibility to mouse fibroblast L929 and human microvascular endothelial cells. Journal of Biomedical Materials Research. Part A, 87, 832-842. doi:10.1002/jbm.a.31890
[47]  Huang, Y.C. and Huang, Y.Y. (2006) Biomaterials and strategies for nerve regeneration. Artifical Organs, 30, 514-522. doi:10.1111/j.1525-1594.2006.00253.x
[48]  Zhao, Y., Zou, B., Shi, Z., Wu, Q. and Chen, G.Q. (2007) The effect of 3-hydroxybutyrate on the in Vitro differenttiation of murine osteoblast MC3T3-E1 and in Vivo bone formation in ovariectomized rats. Biomaterials, 28, 30633073. doi:10.1016/j.biomaterials.2007.03.003
[49]  Cheng, S., Wu, Q., Zhao, Y., Zou, B. and Chen, G.Q. (2006) Effect of poly(hydroxybutyrate-co-hydroxyhexanoate) microparticles on growth of murine fibroblast L929 cells. Polymer Degradation and Stability, 91, 3191-3196. doi:10.1016/j.polymdegradstab.2006.07.010
[50]  Xiao, X.Q., Zhao, Y. and Chen, G.Q. (2007) The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells. Biomaterials, 28, 3608-3616. doi:10.1016/j.biomaterials.2007.04.046
[51]  Ignatiadis, I.A., Yiannakopoulos, C.K., Barbitsioti, A.D., Avram, A.M., Patralexis, H.G., Tsolakis, C.K., Papalois, A.E., Xenakis, T.H., Beris, A.E. and Soucacos, P.N. (2007) Diverse types of epineural conduits for bridging short nerve defects. An experimental study in the rabbit. Microsurgery, 27, 98-104. doi:10.1002/micr.20313
[52]  Wang, X., Hu, W., Cao, Y., Yao, J., Wu, J. and Gu, X. (2005) Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain, 128, 1897-1910. doi:10.1093/brain/awh517
[53]  Nakayama, K., Takakuda, K., Koyama, Y., Itoh, S., Wang, W., Mukai, T. and Shirahama, N. (2007) Enhancement of peripheral nerve regeneration using bioabsorbable polymer tubes packed with fibrin gel. Artificial Organs, 31, 500-508.
[54]  Schnell, E., Klinkhammer, K., Balzer, S., Brook, G., Klee, D., Dalton, P. and Mey J. (2007) Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials, 28, 3012-3025. doi:10.1016/j.biomaterials.2007.03.009
[55]  Reyes, O., Sosa, I., Kuffler D.P. (2005) Promoting neurological recovery following a traumatic peripheral nerve injury. Puerto Rico Health Sciences Journal, 24, 215223.
[56]  Tavangarianan, F. and Li, Y. (2012) Carbon nanostructures as nerve scaffolds for repairing large gaps in severed nerves. Ceramics International, 38, 6075-6090. doi:10.1016/j.ceramint.2012.05.038
[57]  Hazari, A., Johansson-Ruden, G., Junemo-Bostrom, K., Ljungberg, C., Terenghi, G., Green, C. and Wiberg, M. (1999) A new resorbable wrap-around implant as an alternative nerve repair technique. Journal of Hand Surgery (European Volume), 24, 291-295. doi:10.1054/jhsb.1998.0001
[58]  Ljungberg, C., Johansson-Ruden, G., Bostrom, K.J., Novikov, L. and Wiberg, M. (1999) Neuronal survival using a resorbable synthetic conduit as an alternative to primary nerve repair. Microsurgery, 19, 259-264. doi:10.1002/(SICI)1098-2752(1999)19:6<259::AIDMICR1>3.0.CO;2-Q
[59]  Hazari, A., Wiberg, M., Johansson-Ruden, G., Green, C. and Terenghi, G. (1999) A resorbable nerve conduit as an alternative to nerve autograft in nerve gap repair. British Journal of Plastic Surgery, 52, 653-657. doi:10.1054/bjps.1999.3184
[60]  Mohanna, P.N., Young, R.C., Wiberg, M. and Terenghi, G. (2003) A composite poly-hydroxybutyrate-glial growth factor conduit for long nerve gap repairs. Journal of Anatomy, 203, 553-565. doi:10.1046/j.1469-7580.2003.00243.x
[61]  Young, R.C., Wiberg, M. and Terenghi, G. (2002) Poly-3-hydroxybutyrate (PHB): A resorbable conduit for longgap repair in peripheral nerves. British Journal of Plastic Surgery, 55, 235-240. doi:10.1054/bjps.2002.3798
[62]  Aberg, M., Ljungberg, C., Edin, E., Millqvist, H., Nordh, E., Theorin, A., Terenghi, G. and Wiberg, M. (2009) Clinical evaluation of a resorbable wrap-around implant as an alternative to nerve repair: A prospective, assessor-blinded, randomised clinical study of sensory, motor and functional recovery after peripheral nerve repair. Journal of Plastic, Reconstructive & Aesthetic Surgery, 62, 15031509. doi:10.1016/j.bjps.2008.06.041
[63]  Bian, Y.Z., Wang, Y., Aibaidoula, G., Chen, G.Q. and Wu. Q. (2009) Evaluation of poly(3-hydroxybutyrateco-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials, 30, 217-225. doi:10.1016/j.biomaterials.2008.09.036
[64]  Wang, L., Wang, Z.H., Shen, C.Y., You, M.L., Xiao, J.F. and Chen, G.Q. (2010) Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials, 31, 1691-1698. doi:10.1016/j.biomaterials.2009.11.053
[65]  Oudega, M. and Xu, X.M. (2006) Schwann cell transplantation for repair of the adult spinal cord. Journal of Neurotrauma, 23, 453-467. doi:10.1089/neu.2006.23.453
[66]  Raisman, G. and Li, Y. (2007) Repair of neural pathways by olfactory ensheathing cells. Nature Reviews Neuroscience, 8, 312-319.
[67]  Enzmann, G.U., Benton, R.L., Talbott, J.F., Cao, Q. and Whittemore, S.R. (2006) Functional considerations of stem cell transplantation therapy for spinal cord repair. Journal of Neurotrauma, 23, 479-495. doi:10.1089/neu.2006.23.479
[68]  Crompton, K.E., Goud, J.D., Bellamkonda, R.V., Gengenbach, T.R., Finkelstein, D.I., Horne, M.K. and Forsythe, J.S. (2007) Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials, 28, 441-449. doi:10.1016/j.biomaterials.2006.08.044
[69]  Ma, W., Fitzgerald, W., Liu, Q.Y., O'Shaughnessy, T.J., Maric, D., Lin, H.J., Alkon, D.L. and Barker, J.L. (2004) CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Experimental Neurology, 190, 276-288. doi:10.1016/j.expneurol.2003.10.016
[70]  Stang, F., Fansa, H., Wolf, G. and Keilhoff, G. (2005) Collagen nerve conduits–Assessment of biocompatibility and axonal regeneration. BioMedical Materials and Engineering, 15, 3-12.
[71]  Sundback, C.A., Shyu, J.Y., Wang, Y., Faquin, W.C., Langer, R.S., Vacanti, J.P. and Hadlock, T.A. (2005) Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials, 26, 5454-5464. doi:10.1016/j.biomaterials.2005.02.004
[72]  Haile, Y., Haastert, K., Cesnulevicius, K., Stummeyer, K., Timmer, M., Berski, S., Dräger, G., Gerardy-Schahn, R. and Grothe, C. (2007) Culturing of glial and neuronal cells on polysialic acid. Biomaterials, 28, 1163-1173. doi:10.1016/j.biomaterials.2006.10.030
[73]  Novikova, L.N., Pettersson, J., Brohlin, M., Wiberg, M. and Novikov, L.N. (2008) Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials, 29, 1198-1206. doi:10.1016/j.biomaterials.2007.11.033
[74]  Novikov, L.N., Novikova, L.N., Mosahebi, A., Wiberg, M., Terenghi, G. and Kellerth, J.O. (2002) A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials, 23, 3369-3376. doi:10.1016/S0142-9612(02)00037-6
[75]  Chen, W. and Tong, Y.W. (2012) PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization. Acta Biomaterialia, 8, 540-548. doi:10.1016/j.actbio.2011.09.026
[76]  Yu, B.Y., Chen, C.R., Sun, Y.M., Young, T.H. (2009) The response of rat cerebellar granule neurons (rCGNs) to various polyhydroxyalkanoate (PHA) films. Desalination, 245, 639-646. doi:10.1016/j.desal.2009.02.031.

Full-Text

comments powered by Disqus