All Title Author
Keywords Abstract


A Review on Tectonic Record of Strain Buildup and Stress Release across the Andean Forearc along the Gulf of Guayaquil-Tumbes Basin (GGTB) near Ecuador-Peru Border

DOI: 10.4236/ijg.2013.43057, PP. 618-635

Keywords: Andean Forearc, Strain Buildup, Stress Release, Gulf of Guayaquil-Tumbes Basin, Ecuador, Peru

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gravimetric and geologic data show that the reactivation of the Neogene Interandean depression and/or the ~75 - 65 Ma ophiolite suture into the modern dynamic of the Andes controlled the Gulf of Guayaquil Tumbes basin (GGTB) location and evolution during the past 1.8 - 1.6 Myr at least. Depending on whether the remobilization occurred along the interandean depression or the ophiolite suture, the GGTB evolved trough pure or simple shear mechanisms, respectively. Because the GGTB exhibits an along strike tectonic asymmetry associated with a pervasive seismic gap, the simple shear solution is more likely. Tectonic inversion occurred along a mid-crust detachment (the Mid-Crust detachment hereafter) matching the ophiolite suture that accommodates the North Andean Block (NAB) northward drift. The so-called Decoupling Strip located at the shelf slope break accommodated the tensional stress rotation from N-S along the shelf area i.e. NAB-drift induced to E-W along the continental margin i.e. subduction-erosion-induced. The landward dipping Woollard detachment system located at the Upper-Lower slope boundary connects the subduction channel at depth, allowing the Upper slope to evolve independently from the Lower slope wedge. The long-term recurrence interval between earthquakes, the strong interplate coupling, and the aseismic creeping deformation acting along the main low-angle detachments i.e. the Woollard and the Mid-Crust detachments may account for the pervasive seismic gap at the GGTB area. Because the subduction channel exhibits no record of significant seismic activity, no evidence exists to establish a link between the GGTB sustained subsidence and a basin-centered asperity. Because the

References

[1]  A. Gansser, “Facts and Theories on the Andes,” Journal of the Geological Society London, Vol. 129, No. 2, 1973, pp. 93-131. doi:10.1144/gsjgs.129.2.0093
[2]  O. Egbue and J. Kellogg, “Pleistocene to Present North Andean ‘Escape’,” Tectonophysics, Vol. 489, No. 1-4, 2010, pp. 248-257.
[3]  J. Bourgois, J.-F. Toussaint, H. Gonzales, J. Azema, B. Calle, A. Desmet, L. A. Murcia, A. P. Acevedo, E. Parra and J. Tournon, “Geological History of the Cretaceous Ophiolitic Complexes of Northwestern South America (Colombia Andes),” Tectonophysics, Vol. 143, No. 4, 1987, pp. 307-327.
[4]  C. Witt and J. Bourgois, “Forearc Basin Formation in the Tectonic Wake of a Collision-Driven, Coastwise Migrating Crustal Block: The Example of the North Andean Block and the Extensional Gulf of Guayaquil-Tumbes Basin (Ecuador-Peru Border Area),” Geological Society of America Bulletin, Vol. 122, No. 1-2, 2010, pp. 89-108. doi:10.1130/B26386.1
[5]  R. Trenkamp, J. N. Kellogg, T. Freymueller and P. H. Mora, “Wide Plate Margin Deformation, Southern Central America and Northwestern South America, CASA GPS Observations,” Journal of South American Earth Sciences, Vol. 15, No. 2, 2002, pp. 157-171.
[6]  T. Lay and H. Kanamori, “An Asperity Model of Great Earthquake Sequences, in Earthquake Prediction: An International Review,” Maurice Ewing, AGU Washington DC, 1981, pp. 579-592. doi:10.1029/ME004p0579
[7]  T. Boinet, J. Bourgois, H. Mendoza and R. Vargas, “Le Poincon de Pamplona (Colombie): Un Jalon de la Frontière Méridionale de la Plaque Caraibe,” Bulletin de la Societe Geologique de France, Vol. 8, No. 1, 1985, pp. 403-413.
[8]  J. Bourgois, B. Calle, J. Tournon and J. F. Toussaint, “The Andean Ophiolitic Megastructures on the Buga-Buenaventura Transverse (Western Cordillera-Valle, Colombia),” Tectonophysics, Vol. 82, No. 3-4, 1982, pp. 207-229.
[9]  A. C. Kerr, J. A. Aspen, J. Tarney and L. F. Pilatasig, “The Nature and Provenance of Accreted Oceanic Terranes in Western Ecuador: Geochemical and Tectonic Constraints,” Journal of the Geological Society, Vol. 159, No. 5, 2002, pp. 577-594. doi:10.1144/0016-764901-151
[10]  J. Bourgois, A. Egüez, J. Butterlin and P. De Wever, “A Synthetic Stratigraphic Model of the Western Cordillera of Ecuador Andes: With Special Reference to the Eocene Apagua Formation,” Comptes Rendus de l’Académie des Sciences de Paris, Vol. 311, No. 2, 1990, pp. 173-180.
[11]  N. Lebras, F. Mégard, C. Dupuy and J. Dostal, “Geochemistry and Tectonic Setting of Pre-Collision Cretaceous and Paleogene Volcanic Rocks of Ecuador,” Geological Society of America Bulletin, Vol. 99, No. 4, 1987, pp. 569-578.
[12]  H. Lapierre, D. Bosch, V. Dupuis, V., M. Polvé, R. C. Maury, J. Hernandez, P. Monié, D. Yeghicheyan, E. Jaillard, M. Tardy, B. Mercier de Lépinay, M. Mamberti, A. Desmet, F. Keller and F. Sénebier, “Multiple Plume Events in the Genesis of the Peri-Caribbean Cretaceous Oceanic Plateau Province,” Journal of Geophysical Research, Vol. 105, No. B4, 2000, pp. 8403-8421. doi:10.1029/1998JB900091
[13]  V. Ramos, “Anatomy and Global Context of the Andes: Main Geologic Features and the Andean Orogenic Cycle,” In: S. M. Kay, V. A. Ramos and W. R. Dickinson, Eds., Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision, Geological Society of America, Washington DC, 2009, pp. 31-65.
[14]  M. Cortés and J. Angelier, “Paleostress Evolution of the Northern Andes (Eastern Cordillera of Colombia): Implications on Plate Kinematics of the South Caribbean Region,” Tectonics, Vol. 24, No. 1, 2005, Article ID: TC1008. doi:10.1029/2003TC001551
[15]  F. Ego, M. Sebrier, A. Lavenu, H. Yepes and A. Egüez, “Quaternary State of Stress in the Northern Andes and the Restraining Bend Model for the Ecuadorian Andes,” Tectonophysics, Vol. 259, No. 1-3, 1996, pp. 101-116.
[16]  A. Lavenu, T. Winter and F. Davila, “A Pliocene-Quaternary Compressional Basin in the Interandean Depression, Central Ecuador,” Geophysical Journal International, Vol. 121, No. 1, 1995, pp. 279-300.
[17]  M. Sosson, J. Bourgois and B. Mercier de Lepinay, “Sea BEAM and Deep-Sea Submersible Nautile Surveys in the Chiclayo Canyon off Peru (7°S). Subsidence and Subduction Erosion of an Andean-type Convergent Margin since Pliocene Time,” Marine Geology, Vol. 118, No. 3-4, 1994, pp. 237-256. doi:10.1016/0025-3227(94)90086-8
[18]  A. Fildani, A. M. Hessler and S. A. Graham, “Trench-Forearc Interactions Reflected in the Sedimentary Fill of Talara Basin, Northwest Peru,” Basin Research, Vol. 20, No. 3, 2008, pp. 305-321. doi:10.1111/j.1365-2117.2007.00346.x
[19]  E. Jaillard, M. Ordonez, S. Benitez, G. Berrones, N. Jiménez, G. Montenegro and I. Zambrano, “Basin Development in an Accretionary, Oceanic-Floored Fore-Arc Setting: Southern Coastal Ecuador during Late Cretaceous-Late Eocene Time,” In: A. J. Tankart, S. Suarez and H. J. Welsink, Eds., Petroleum Basins of South America, American Association of Petroleum Geologists, AAPG, Tulsa, 1995, pp. 615-631.
[20]  A. Calahorrano, “Structure de la Marge du Golfe de Guayaquil (Equateur) et Propriété Physique du Chenal de Subduction, à Partir de Données de Sismique Marine Réflexion et Réfraction,” Ph.D. Thesis, Université Pierre et Marie Curie, Paris, 2005, 227 p.
[21]  J. Bourgois, G. Pautot, W. Bandy, T. Boinet, P. Chotin, P. Huchon, B. Mercier de Lepinay, F. Monge, J. Monlau, B. Pelletier, M. Sosson and R. von Huene, “Seabeam and Seismic Reflection Imaging of the Tectonic Regime of the Andean Continental Margin off Peru (4°S to 10°S),” Earth Planet Science Letters, Vol. 87, No. 1-2, 1988, pp. 111-126.
[22]  R. von Huene, J. Bourgois, J. Miller and G. Pautot, “A Large Tsunamogenic Landslide and Debris Flow along the Peru Trench,” Journal of Geophysical Research, Vol. 94, No. B2, 1989, pp. 1703-1714. doi:10.1029/JB094iB02p01703
[23]  J. Bourgois, F. Bigot-Cormier, D. Bourles, R. Braucher, O. Dauteuil, C. Witt and F. Michaud, “Tectonic Record of Strain Buildup and Abrupt Co-Seismic Stress Release across the Northwestern Peru Coastal Plain, Shelf, and Continental Slope during the Past 200 kyr,” Journal of Geophysical Research, Vol. 112, No. B4, 2007, Article ID: B04104.
[24]  C. Witt, J. Bourgois, F. Michaud, M. Ordonez, N. Jimenez and M. Sosson, “Development of the Gulf of Guayaquil (Ecuador) during the Quaternary as an Effect of the North Andean Block Tectonic Escape,” Tectonics, Vol. 25, No. 3, 2006, Article ID: TC3017. doi:10.1029/2004TC001723
[25]  B. C. Burchfiel and J. H. Stewart, “Pull-Apart Origin of the Central Segment of Death Valley, California,” Geological Society of America Bulletin, Vol. 77, No. 4, 1966, pp. 439-442.
[26]  P. Mann, M. R. Hempton, D. C. Bradley and K. Burke, “Development of Pull-Apart Basins,” Journal of Geology, Vol. 91, No. 5, 1983, pp. 529-554.
[27]  J. T. Freymueller, J. Kellogg and V. Vega, “Plate Motions in the North Andean Region,” Journal of Geophysical Research, Vol. 98, No. B12, 1993, pp. 21,853-21,863.
[28]  J. Bourgois, D. Bourles and R. Braucher, “Reply to Comment by K. Pedoja et al. on Tectonic Record of Strain Buildup and Abrupt Coseismic Stress Release across the Northwestern Peru Coastal Plain, Shelf, and Continental Slope during the Past 200 kyr,” Journal of Geophysical Research, Vol. 116, No. B9, 2011, Article ID: B09402. doi:10.1029/2011JB008582
[29]  J. Bourgois and C. Witt, “Forearc Basin Location Originating from Tectonic Inversion along an Old Ophiolite Suture: The Gulf of Guayaquil-Tumbes Basin (Ecuador-Peru Border),” Fall Meeting Supplement, Vol. 89, No. 53, 2008, Abstract T11B-1862.
[30]  G. L. Shepherd and R. Moberly, “Coastal Structure of the Continental Margin Northwest Peru and Southwest Ecuador,” In: L. D. Kulm, J. Dymond, E. J. Dasch and D. M. Hussong, Eds., Nazca Plate: Crustal Formation and Andean Convergence, Geological Society of America, Washington DC, 1981, pp. 351-391.
[31]  J. Bourgois, Y. Lagabrielle, P. De Wever, E. Suess and NAUTIPERC Team, “Tectonic History of the Northern Peru Convergent Margin during the Past 400 ka,” Geology, Vol. 21, No. 6, 1993, pp. 531-534.
[32]  A. Calahorrano, V. Sallares, J.-Y. Collot, F. Sage and C. R. Ranero, “Non-Linear Variations of the Physical Properties along the Southern Ecuador Subduction Channel: Results from Depth-Migrated Seismic Data,” Earth Planet Science Letters, Vol. 267, No. 3-4, 2008, pp. 453-467.
[33]  R. von Huene and D. Scholl, “Observations at Convergent Margins Concerning Sediment Subduction, Subduction Erosion and the Growth of Continental Crust,” Reviews of Geophysics, Vol. 29, No. 3, 1991, pp. 279-316. doi:10.1029/91RG00969
[34]  D. T. Sandwell and W. H. F. Smith, “Global Marine Gravity from Retracked Geosat and ERS-1 Altimetry: Ridge Segmentation versus Spreading Rate,” Journal of Geophysical Research, Vol. 114, No. B1, 2009, Article ID: B01411. doi:10.1029/2008JB006008
[35]  J. Bourgois, J. C. Lahuathe, W. Vaca, P. Verdezoto and R. Cornejo, “Mapa Geologico del Ecuador, Hoja de Canar, Escala 1:50000,” Instituto Geografico Militar (IGM), Ministerio de Recursos Naturales y Energeticos (MRNE), Direccion Nacional de Geologia (DINAGE), Quito, 2006.
[36]  T. Lay, H. Kanamori and L. Ruff, “The Asperity Model and the Nature of Large Subduction Zone Earthquakes,” Earthquake Prediction Research, Vol. 1, No. 1, 1982, pp. 3-71.
[37]  J. Swenson and S. Beck, “Historical 1942 Ecuador and 1942 Peru Subduction Earthquakes, and Earthquake Cycles along Colombia, Ecuador and Peru Subduction Segments,” Pure and Applied Geophysics, Vol. 146, No. 1, 1996, pp. 67-101.
[38]  E. R. Engdahl, R. D. van der Hilst and R. P. Buland, “Global Teleseismic Earthquake Relocation with Improved Travel Times and Procedures for Depth Relocation,” Bulletin of the Seismological Society of America, Vol. 88, No. 3, 1998, pp. 722-743.
[39]  M. Gutscher, J. Malavieille, S. Lallemand and J. Collot, “Tectonic Segmentation of the North Andean Margin: Impact of the Carnegie Ridge Collision,” Earth and Planetary Science Letters, Vol. 168, No. 3-4, 1999, pp. 255-270.
[40]  B. Guiller, L.-L. Chatelain, E. Jaillard, H. Yepes, G. Poupinet and J.-F. Fels, “Seismological Evidence on the Geometry of the Orogenic System in Central-Northern Ecuador (South America),” Geophysical Research Letters, Vol. 28, No. 19, 2001, pp. 3749-3752.
[41]  M. Barazangi and B. Isacks, “Spatial Distribution of Earthquakes and Subduction of the Nazca Plate beneath South America,” Geology, Vol. 4, No. 11, 1976, p. 686. doi:10.1130/0091-7613(1976)4<686:SDOEAS>2.0.CO;2
[42]  A. Hasegawa and I. S. Sacks, “Subduction of the Nazca Plate beneath Peru as Determined from Seismic Observations,” Journal of Geophysical Research, Vol. 86, No. B6, 1981, pp. 4971-4980.
[43]  R. H. Pilger, “Plate Reconstructions, Aseismic Ridges, and Low-Angle Subduction beneath the Andes,” Geological Society of America Bulletin, Vol. 92, No.7, 1981, pp. 448-456.
[44]  A. M. Pelayo and D. A. Wiens, “The November 20, 1960 Peru Tsunami Earthquake: Source Mechanism of a Slow Event,” Geophysical Research Letters, Vol. 17, No. 6, 1990, pp. 661-664. doi:10.1029/GL017i006p00661
[45]  J. F. Lander, “Seismological Notes-November and December 1970,” Bulletin of the Seismological Society of America, Vol. 61, No. 3, 1971, pp. 1101-1105.
[46]  J. Chappell, Y. Ota and K. Berrymann, “Late Quaternary coseismic Uplift History of Huon Peninsula, Papua New Guinea,” Quaternary Science Reviews, Vol. 15, No. 1, 1996, pp. 7-22. doi:10.1016/0277-3791(95)00062-3
[47]  D. Melnick, B. Bookhagen, M. R. Strecker and H. P. Echtler, “Segmentation of Megathrust Rupture Zones from Fore-Arc Deformation Patterns over Hundreds to Millions Years, Arauco Peninsula, Chile,” Journal of Geophysical Research, Vol. 114, No. B01407, 2009. doi:10.1029/2008JB005788
[48]  J. A. Jackson, “Active Normal Faulting and Crustal Extension,” In: M. P. Coward, J. F. Dewey and P. L. Hancock, Eds., Continental Extensional Tectonics, Vol. 28, Geological Society Special Publications, London, 1987, pp. 3-17.
[49]  W. R. Buck, F. Martinez, M. S. Streckler and J. R. Cochran, “Thermal Consequences of Lithospheric Extension: Pure and Simple,” Tectonics, Vol. 7, No. 2, 1988, pp. 213-234.
[50]  R. E. Wells, R. J. Blakely, Y. Sugiyama, D. W. Scholl and P. A. Dinterman, “Basin-Centered Asperities in Great Subduction Zone Earthquakes: A Link between Slip, Subsidence, and Subduction Erosion?” Journal of Geophysical Research, Vol. 108, No. B10, 2003. doi:10.1029/2002JB002072
[51]  T. R. A. Song and M. Simons, “Large Trench-Parallel Gravity Variations Predict Seismogenic Behavior in Subduction Zones,” Science, Vol. 301, No. 5633, 2003, pp. 630-633.
[52]  B. Wernicke, “Low-Angle Normal Faults and Seismicity: A Review,” Journal of Geophysical Research, Vol. 100, No. B10, 1995, pp. 20159-20174. doi:10.1029/95JB01911
[53]  P. Huchon and X. Le Pichon, “Sunda Strait and Central Sumatra Fault,” Geology, Vol. 12, No. 11, 1984, pp. 668-672.
[54]  M. Diament, H. Harjono, K. Karta, C. Deplus, D. Dahrin, T. Zen, M. Gerard, O. Lassal, A. Martin and J. Malod, “Mentawai Fault Zone off Sumatra: A New Key to the Geodynamics of Western Indonesia,” Geology, Vol. 20, No. 3, 1992, pp. 259-262.
[55]  H. Lelgemann, M. A. Gutscher, J. Bialas, E. R. Flueh, W. Weinrebe and C. Reichert, “Tensional Basins in the Western Sunda Strait,” Geophysical Research Letters, Vol. 27, No. 21, 2000, pp. 3545-3548. doi:10.1029/2000GL011635
[56]  H. Kopp, E. R. Flueh, D. Klaeschen, J. Bialas and C. Reichert, “Crustal Structure of the Central Sunda Margin at the Onset of Oblique Subduction,” Geophysical Journal International, Vol. 147, No. 2, 2001, pp. 449-474. doi:10.1046/j.0956-540x.2001.01547.x
[57]  R. D. Forsythe and E. P. Nelson, “Geological Manifestations of Ridge Collision: Evidence from the Golfo de Penas-Taitao Basin, Southern Chile,” Tectonics, Vol. 4, No. 5, 1985, pp. 477-495. doi:10.1029/TC004i005p00477
[58]  J. Bourgois, C. Guivel, Y. Lagabrielle, T. Calmus, J. Boulègue and V. Daux, “Glacial-Interglacial Trench Supply Variation, Spreading-Ridge Subduction, and Feedback Controls on the Andean Margin Development at the Chile Triple Junction Area (45° -48°S),” Journal of Geophysical Research, Vol. 105, No. B4, 2000, pp. 8355-8386.
[59]  G. Kimura, “Oblique Subduction and Collision: Forearc Tectonics and the Kuril Arc,” Geology, Vol. 14, No. 5, 1986, pp. 404-407.
[60]  R. J. Arculus, H. Lapierre and E. Jaillard, “Geochemical Window into Subduction and Accretion Processes: Raspas Metamorphic Complex, Ecuador,” Geology, Vol. 27, No. 6, 1999, pp. 547-550.

Full-Text

comments powered by Disqus