All Title Author
Keywords Abstract


Lipid-Polymer Membranes as Carriers for L-Tryptophan: Molecular and Metabolic Properties

DOI: 10.4236/ojmc.2013.31005, PP. 31-39

Keywords: Lipopolymers, L-Tryptophan, Drug Delivery

Full-Text   Cite this paper   Add to My Lib

Abstract:

Polymerized liposomes encapsulating L-tryptophan were studied with the aim to characterize them as drug delivery systems for the treatment of several metabolic diseases that need an increased systemic L-tryptophan concentration. polymerized liposomes were obtained by UV irradiation of vesicles containing 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) in a 1:1 molar ratio, in the presence of 10 and 50 mol% of L-tryptophan (respect to total lipid concentration). Polymerization efficiency was studied spectrophotometrically. Also, bilayer packing at the polar head region was followed with the Merocyanine 540 (MC540) and specific interactions in the lipopolymers were studied by FTIR. High L-tryptophan concentrations (50 mol% respect to total lipid concentration) induced a higher amount of six- and nine-unit polymers. This phenomenon was induced because the L-tryptophan located outside the lipid membrane was included in it during the polymerization process and was thus responsible for the better accommodate of the polar head region. This was not possible with the lower amount of L-tryptophan (10 mol%). The stability of lipopolymers with different amounts of L-tryptophan was studied through release profiles. Polymerized liposomes with 50 mol% of L-tryptophan were able to retain around 80% of the amino acid after 24 hours, whereas those with 10 mol % of the amino acid were able to retain 20%. The metabolic activity of the Caco-2 cell line was also studied. Cytotoxic effects were low in the presence of polymerized liposomes, rendering a maximum percentage of cell death of 30%. In summary, this work stresses the relevance of nonspecific drug-polymerized membrane binding on L-tryptophan pharmacological interaction with possible pharmaceutical applications in liposomal drug delivery. Moreover, the absence of significant cytotoxic effects allows the system proposed to be applied in human health.

References

[1]  B. C. Keller, “Liposomes in Nutrition,” Trends in Food Science & Technology, Vol. 12, No. 1, 2001, pp. 25-31.
[2]  N. Hirota, S. Duzgunes and N. Duzgunes, “PhysicoChemical Approach to Targeting Phenomena,” Current Drug Discovery Technologies, Vol. 8, No. 4, 2011. doi:10.2174/157016311798109399
[3]  N. S. Chiaramoni, J. Gasparri, L. Speroni, M. C. Taira and S. del V. Alonso, “Biodistribution of Liposome/DNA Systems after Subcutaneous and Intraperitoneal Inoculation,” Journal of Liposome Research, Vol. 20, No. 3, 2010, pp. 191-201. doi:10.3109/08982100903244518
[4]  B. Yavlovich, A. Smith, R. Gupta, K. Blumenthal, A. Blumenthal and A. Puri, “Light-Sensitive Lipid-Based Nanoparticles for Drug Delivery: Design Principles and Future Considerations for Biological Applications,” Molecular Membrane Biology, Vol. 25, No. 7, 2010, pp. 364-381. doi:10.3109/09687688.2010.507788
[5]  O. Albrecht, D. S. Johnston, C. Villaverde and D. Chapman, “Stable Biomembrane Surfaces Formed by Phospholipid Polymers,” Biochim Biophys Acta, Vol. 687, No. 2, 1982, pp. 165-169. doi:10.1016/0005-2736(82)90542-9
[6]  R. Puri and A. R. Blumenthal, “Polymeric Lipid Assemblies as Novel Theranostic Tools,” Accounts of Chemical Research, Vol. 44, No. 10, 2011, pp. 1071-1079. doi:10.1021/ar2001843
[7]  M. Gou, G. Guo, J. Zhang, K. Men, J. Song, F. Luo, X. Zhao, Z. Qian and Y. Wei, “Time-Temperature Chromatic Sensor Based on Polydiacetylene (PDA) Vesicle and Amphiphilic Copolymer,” Sensors and Actuators B: Chemical, Vol. 150, No. 1, 2010, pp. 406-411. doi:10.1016/j.snb.2010.06.041
[8]  S. Alonso-Romanowski, N. S. Chiaramoni, V. S. Lioy, R. A. Gargini, L. I. Viera and M. C. Taira, “Characterization of Diacetylenic Liposomes as Carriers for Oral Vaccines,” Chemistry and Physics of Lipids, Vol. 122, No. 1-2, 2003, pp. 191-203. doi:10.1016/S0009-3084(02)00190-1
[9]  G. Ravindran and W. L. Bryden, “Tryptophan Determination in Proteins and Feedstuffs by Ion Exchange Chromatography,” Food Chemistry, Vol. 89, No. 2, 2005, pp. 309-314. doi:10.1016/j.foodchem.2004.05.035
[10]  P. Nagaraja, H. S. Yathirajan and R. A. Vasantha, “Highly Sensitive Reaction of Tryptophan with p-Phenylenediamine,” Analytical Biochemistry, Vol. 312, No. 2, 2003, pp. 157-161.
[11]  G. W. Gokei, “Indole, the Aromatic Element of Tryptophan, as a Pi-Donor and Amphiphilic Headgroup,” International Congress Series, Vol. 1304, 2007, pp. 1-14. doi:10.1016/j.ics.2007.07.038
[12]  C. E. B. Esbjorner, B. Caesar, P. Albinsson, B. Lincoln and B. Norden, “Tryptophan Orientation in Model Lipid Membranes,” Biochemical and Biophysical Research Communications, Vol. 361, No. 3, 2007, pp. 645-650. doi:10.1016/j.bbrc.2007.07.135
[13]  A. V. Popova and D. K. Hincha, “Specific inTeractions of Tryptophan with Phosphatidylcholine and Digalactosyldiacylglycerol in Pure and Mixed Bilayers in the Dry and Hydrated State,” Chemistry and Physics of Lipids, Vol. 132, No. 2, 2004, pp. 171-184. doi:10.1016/j.chemphyslip.2004.06.003
[14]  C. F. Temprana, E. L. Duarte, M. C. Taira, M. T. Lamy and S. del Valle Alonso, “Structural Characterization of Photopolymerizable Binary Liposomes Containing Diacetylenic and Saturated Phospholipids,” Langmuir, Vol. 26, No. 12, 2010, pp. 10084-10092. doi:10.1021/la100214v
[15]  R. J. Fernstrom and R. J. Wurtman, “Brain Serotonin Content: Physiological Dependence on Plasma Tryptophan Levels,” Science, Vol. 173, No. 3992, 1971, pp. 149-152. doi:10.1126/science.173.3992.149
[16]  R. J. Schaechter and R. J. Wurtman, “Tryptophan Availability Modulates Serotonin Release from Rat Hypothalamic Slices,” Journal of Neurochemistry, Vol. 53, No. 6, 1989, pp. 1925-1933.
[17]  F. Wurtman, E. Hefti and E. Melamed, “Precursor Control of Neurotransmitter Synthesis,” Pharmacological Reviews, Vol. 32, No. 4, 1980, pp. 315-335.
[18]  R. J. Wurtman and J. J. Wurtman, “Serotoninergic Mechanisms and Obesity,” The Journal of Nutritional Biochemistry, Vol. 9, No. 9, 1998, pp. 511-515. doi:10.1016/S0955-2863(98)00029-1
[19]  A. D. Bangham, “Model Membranes,” Chemistry and Physics of Lipids, Vol. 8, No. 4, 1972, pp. 386-392. doi:10.1016/0009-3084(72)90069-2
[20]  N. S. Chiaramoni, L. C. Baccarini, M. C. Taira and S. D. V. Alonso, “Liposome/DNA Systems: Correlation between Hydrophobicity and DNA Conformational Changes,” Journal of Biological Physics, Vol. 34, No. 1-2, 2008, pp. 179-188. doi:10.1007/s10867-008-9103-2
[21]  N. S. Chiaramoni, L. Speroni, M. C. Taira and S. D. V. Alonso, “Liposome/DNA Systems: Correlation between Association, Hydrophobicity and Cell Viability,” Biotechnology Letters, Vol. 29, No. 11, 2007, pp. 1637-1644. doi:10.1007/s10529-007-9454-y
[22]  M. M. Fabani, R. A. Gargini, M. C. Taira, R. Iacono, S. Iacono and S. Alonso-Romanowski, “Study of in Vitro Stability of Liposomes and in Vivo Antibody Response to Antigen Associated with Liposomes Containing GM1 after Oral and Subcutaneous Immunization,” Journal of Liposome Research, Vol. 12, No. 1-2, 2002, pp. 13-27. doi:10.1081/LPR-120004772
[23]  J. Gasparri, L. Speroni, N. S. Chiaramoni and S. del V. Alonso, “Relationship between the Adjuvant and Cytotoxic Effects of the Positive Charges and Polymerization in Liposomes,” Journal of Liposome Research, Vol. 21, No. 2, 2011, pp. 124-133. doi:10.3109/08982104.2010.491073
[24]  P. I. Lelkes and I. R. Miller, “Perturbations of Membrane Structure by Optical Probes: I. Location and Structural Sensitivity of Merocyanine 540 Bound to Phospholipid Membranes,” The Journal of Membrane Biology, Vol. 52, No. 1, 1980, pp. 1-15. doi:10.1007/BF01869001
[25]  J. Fogh, J. M. Fogh, J. Fau and T. Orfeo, “One Hundred and Twenty-Seven Cultured Human Tumor Cell Lines Producing Tumors in Nude Mice,” Journal of the National Cancer Institute, Vol. 59, No. 1, 1997, pp. 221-226.
[26]  M. P. Desai, E. Labhasetwar, R. J. Walter, G. L. Levy and G. L. Amidon, “The Mechanism of Uptake of Biodegradable Microparticles in Caco-2 Cells Is Size Dependent,” Pharmaceutical Research, Vol. 14, No. 11, 1997, pp. 1568-1573.
[27]  T. Mosmann, “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” Journal of Immunological Methods, Vol. 16, No. 1-2, 1983, pp. 55-63. doi:10.1016/0022-1759(83)90303-4
[28]  M. C. Taira, N. S. Chiaramoni, K. M. Pecuch and S. Alonso-Romanowski, “Stability of Liposomal Formulations in Physiological Conditions for Oral Drug Delivery,” Drug Delivery, Vol. 11, No. 2, 2004, pp. 123-128. doi:10.1080/10717540490280769
[29]  S. Johnston, A. Sanghera, D. Manjon-Rubio and D. Chapman, “The Formation of Polymeric Model Biomembranes from Diacetylenic Fatty Acids and Phospholipids,” Biochimica et Biophysica Acta, Vol. 602, No. 1, 1980, pp. 213-216.
[30]  R. Ahl, J. Price, B. P. Smuda, A. Gaber and A. Singh, “Insertion of Bacteriorhodopsin into Polymerized Diacetylenic Phosphatidylcholine Bilayers,” Biochimica et Biophysica Acta, Vol. 1028, No. 2, 1990, pp. 141-153. doi:10.1016/0005-2736(90)90148-H
[31]  H. Norman and H. Nymeyer, “Indole Localization in Lipid Membranes Revealed by Molecular Simulation,” Biophysical Journal, Vol. 91, No. 6, 2006, pp. 2046-2054. doi:10.1529/biophysj.105.080275
[32]  I. Stanish and A. Singh, “Highly Stable Vesicles Composed of a New Chain-Terminus Acetylenic Photopolymeric Phospholipid,” Chemistry and Physics of Lipids, Vol. 112, No. 2, 2001, pp. 99-108. doi:10.1016/S0009-3084(01)00173-6
[33]  I. Fournier, J. Barwicz, M. Auger and P. Tancrède, “The Chain Conformational Order of Ergosterolor Cholesterol-Containing DPPC Bilayers as Modulated by Amphotericin B: A FTIR Study,” Chemistry and Physics of Lipids, Vol. 151, No. 1, 2008, pp. 41-50. doi:10.1016/j.chemphyslip.2007.09.006
[34]  D. A. Mannock, R. N. A. H. Lewis and R. N. McElhaney, “A Calorimetric and Spectroscopic Comparison of the Effects of Ergosterol and Cholesterol on the Thermotropic Phase Behavior and Organization of Dipalmitoylphosphatidylcholine Bilayer Membranes,” Biochimica et Biophysica Acta (BBA)—Biomembranes, Vol. 1798, 2010, pp. 376-388.
[35]  R. N. A. H. Lewis and R. N. McElhaney, “The Structure and Organization of Phospholipid Bilayers as Revealed by Infrared Spectroscopy,” Chemistry and Physics of Lipids, Vol. 96, No. 1-2, 1998, pp. 9-21. doi:10.1016/S0009-3084(98)00077-2
[36]  P. L. Ahl and W. R. Perkins, “Interdigitation-Fusion Liposomes,” In: D. Nejat, Ed., Methods in Enzymology, Vol. 367, Academic Press, Cambridge, 2003, pp. 80-98.
[37]  A. M. A. Elhissi, M. A. A. O’Neill, S. A. Roberts and K. M. G. Taylor, “A Calorimetric Study of Dimyristoylphosphatidylcholine Phase Transitions and Steroid-Liposome Interactions for Liposomes Prepared by Thin Film and Proliposome Methods,” International Journal of Pharmaceutics, Vol. 320, No. 2, 2006, pp. 124-130.
[38]  K. Takeda, H. Okuno, T. Hata, M. Nishimoto, H. Matsuki and S. Kaneshina, “Interdigitation and Vesicle-to-Micelle Transformation Induced by a Local Anesthetic Tetracaine in Phospholipids Bilayers,” Colloids and Surfaces B: Biointerfaces, Vol. 72, No. 1, 2009, pp. 135-140.
[39]  P. R. Griffiths, “The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules,” Vibrational Spectroscopy, Vol. 4, No. 1, 1992, p. 121. doi:10.1016/0924-2031(92)87021-7
[40]  O. Takikawa, “Biochemical and Medical Aspects of the Indoleamine 2,3-Dioxygenase-Initiated l-Tryptophan Metabolism,” Biochemical and Biophysical Research Communications, Vol. 338, No. 1, 2005, pp. 12-19. doi:10.1016/j.bbrc.2005.09.032
[41]  N. Le Floc’h and B. Seve, “Biological Roles of Tryptophan and Its Metabolism: Potential Implications for Pig Feeding,” Livestock Science, Vol. 112, No. 1, 2007, pp. 23-32. doi:10.1016/j.livsci.2007.07.002

Full-Text

comments powered by Disqus