All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

РОБАСТНА ПАРАМЕТРИЧНА ОПТИМ ЗАЦ Я СИСТЕМ СТАБ Л ЗАЦ НАЗЕМНИХ РУХОМИХ ОБ’ КТ В Robust parametric optimization systems stabilization of ground moving objects Робастная параметрическая оптимизация систем стабилизации наземных подвижных объектов

РОБАСТНА СТРУКТУРНО-ПАРАМЕТРИЧНА ОПТИМ ЗАЦ Я СИСТЕМ СТАБ Л ЗАЦ НАЗЕМНИХ РУХОМИХ ОБ’ КТ В Robust structural and parametric optimization of systems of stabilization of ground moving objects Робастная структурно-параметрическая оптимизация систем стабилизации наземных подвижных объектов

РОБАСТНА ПАРАМЕТРИЧНА ОПТИМ ЗАЦ Я ДИСКРЕТНО СИСТЕМИ СТАБ Л ЗАЦ НАЗЕМНОГО РУХОМОГО ОБ’ КТА Robust parametric optimization of discrete systems stabilization of ground moving object Робастная параметрическая оптимизация дискретной системы стабилизации наземного подвижного объекта

RECENT TRENDS IN MACHINE LEARNING FOR BACKGROUND MODELING AND DETECTING MOVING OBJECTS

On Segmentation of Moving Objects by Integrating PCA Method with the Adaptive Background Model

Moving objects detection under slow moving background
慢运动背景下运动目标提取算法*

Detection Contours of Multiple Moving Objects with Complex Background
复杂背景下多运动目标轮廓检测

Robust detection of moving objects from a moving platform:A sensor fusion approach
基于多传感器融合的运动平台运动目标检测

Moving Objects Detection and Segmentation Based on Background Subtraction and Image Over-Segmentation

Developing a Moving Objects Management System

More...

Fast and Robust Moving Objects Detection based on Non-parametric Background Modeling

DOI: 10.4304/jsw.4.10.1084-1090

Keywords: background subtraction , nonparametric , mean shift

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fast and reliable detection of moving objects is one of the important requirements for many computer vision and video analysis applications. Mean shift based non-parametric background modeling supports more sensitive and robust detection in dynamic outdoor scenes. However it is prohibitive to real-time applications such as video surveillance. This paper aims to deal with the limitation of high computational complexity. Firstly, coarse to fine methods are proposed to avoid raster scanning entire image. Foreground pixels are detected in coarse level to roughly locate the foreground objects in the image, and then fine detection is performed on the corresponding blocks gradually. Secondly, fast mean shift approach is presented according to temporal dependencies. Mean shift iterations are performed starting from incoming data and the modes obtained last time. The experimental results show that the proposed algorithm is effective and efficient in dynamic environment. The proposed algorithm has been applied to move objects detection in our real-time marine video surveillance system.

Full-Text

comments powered by Disqus