All Title Author
Keywords Abstract


巨型水库群防洪发电联合优化调度研究与应用
Joint Operation of Flood Control and Hydropower Generation for the Multi-Reservoir System

DOI: 10.12677/jwrr.2012.11001, PP. 1-6

Keywords: 巨型水库群;防洪标准;联合调度;库容补偿;水力发电;POA算法
Multi-Reservoir System
, Flood Control Standard, Joint Operation, Storage Compensation, Hydropower Generation, Progressive Optimality Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对三峡和清江梯级巨型水库群防洪发电补偿联合调度问题,分别建立了梯级单独和水库群联合防洪优化调度数学模型,以发电量最大为目标的水电站群联合调度模型,采用POA算法分别计算两个梯级单独运行和梯级联合运行在不同准则下的防洪标准和电力补偿效益。选取长江宜昌站1954、1981、1982和1998年为典型年推求设计洪水过程线,梯级单独和水库群联合调度分别可使荆江河段的防洪标准提高到150年168年。选择1982~1987连续水文周期年的日径流资料进行计算,与设计方案相比,三峡梯级和清江梯级联合调度后的弃水量分别减少了577.41亿m3和53.84亿m3,年平均发电量增加了59.92亿kW?h,即增加了5.37%,发电补偿效益十分显著。
Joint operation of flood control and hydropower generation for the Three Gorges cascade and Qingjiang cascade reservoirs in China was studied in this paper. The flood control and hydropower generation models were established for individual and joint operation of the cascade reservoirs. The models have considered reservoir flood prevention storage and electric compensation benefits among cascade reservoirs and were solved by the progressive optimality algorithms. Four typical years of 1954, 1981, 1982 and 1998 of the Yichang hydrological stations were selected to derive the design flood hydrographs. The results show that the average of Jingjiang River flood control standards can be raised to and 150-year and 168-year return periods respectively. The daily inflow data of consecutive hydrological years of 1982 - 1987 were used to test the models. Compared with the design operation rules, the joint operation of the multi-reservoir system can generate 5.992 billion kWh of extra power annual or an increase of 5.37% by the objective function of maximum hydropower generation. Through reservoir storage compensation, the spilled water of the Three Gorges and Qingjiang cascade reservoirs was decreased by 57.741 and 5.384 billion m3, respectively.

References

[1]  长江水利委员会. 三峡工程综合利用与水库调度研究[M]. 武汉: 湖北科学技术出版社, 1997.
[2]  李玮, 郭生练, 刘攀, 郭富强. 梯级水库汛限水位动态控制模型研究及应用[J]. 水力发电学报, 2008, 27(2): 22-28.
[3]  高仕春, 万飚, 梅亚东等. 三峡梯级和清江梯级水电站联合调度研究[J]. 水利学报, 2006, 37(4): 504-507.
[4]  万飚, 高仕春, 陶自成等. 三峡梯级和清江梯级联合运行影响分析[J]. 水力发电学报, 2007, 26(4): 1-4.
[5]  刘宁. 三峡–清江梯级电站联合优化调度研究[J]. 水利学报, 2008, 38(3): 264-271.
[6]  陈炯宏, 郭生练, 刘攀等. 三峡梯级–清江梯级水电站群联合调度研究[J]. 水力发电学报, 2010, 29(6): 78-84.
[7]  郭生练, 陈炯宏, 刘攀, 李雨. 水库群联合优化调度研究进展与展望[J]. 水科学进展, 2010, 21(4): 85-92.
[8]  H. R. Howson, N. F. C. Sancho. A new algorithm for the solution of multi-state dynamic programming problems. Mathematical Programming, 1975, 8(1): 104-106.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal