All Title Author
Keywords Abstract


讨赖河流域月降水时间序列中的混沌现象
Chaos Phenomenon of the Monthly Rainfall in the Taolai River Basin

DOI: 10.12677/JWRR.2012.13019, PP. 137-141

Keywords: 混沌理论;饱和关联度;Kolmogorov Entropy;讨赖河流域
Chaotic Theory
, Saturation Correlation Dimension, Kolmogorov Entropy, Taolai River Basin

Full-Text   Cite this paper   Add to My Lib

Abstract:

降水是我国西北干旱内陆河流域出山径流的重要补给来源,很大程度上影响着流域水资源的形成转化、开发利用以及旱涝灾害等过程。本文以讨赖河流域为研究区,基于流域上、中、下游3个典型站点的月降水序列资料,采用混沌理论分析方法,以饱和关联维数和Kolmogorov熵为控制参量,计算并探讨该区月降水序列中的混沌特性。计算结果表明,讨赖河流域降水过程在月时间尺度上具有混沌特征,3个典型站的1/Kolmogorov值得出的流域降水的可预报长度为10个月左右。本研究有助于深入理解干旱内陆河流域复杂降水过程变化规律,对降水径流过程的研究具有序列特征方面的指导意义。
As one of the important sources, rainfall in upper reaches of inland rivers in arid regions of northwestern Chinaplays key roles in not only the surface runoff generation, water transformation and utilization, but also regional drought and flooding to some certain extent. For a better understanding of characteristics of the rainfall, theTaolaiRiver basinis selected as the study area. The method of Chaos is used to determine the two key parameters of the Saturation Correlation Dimension and Kolmogorov Entropy based on the statistics of the observed monthly rainfall series from three representatively hydro-meteorological stations in the upper, middle and lower reaches of the river, respectively. Determination of the two key parameters resulted in relatively chaotic features for the time series of the monthly rainfall across theTaolaiRiver basin. Furthermore, reciprocal of the Kolmogorov entropy described a possible temporal forecasting scale of 10 months in this region. This study can help to understand the complex rainfall regime and analyze precipitation-runoff processes in arid regions.

References

[1]  李红霞, 许士国, 徐向舟, 等. 混沌理论在水文领域中的研究现状及展望[J]. 水文, 2007, 27(6): 1-5. LI Hongxia, XU Tuguo, XU Xiangzhou, et al. Present situation and prospect of chaos theory in hydrology. Journal of China Hydrology, 2007, 27(6): 1-5. (in Chinese)
[2]  SIVAKUMAR, B. Chaos theory in hydrology: Important issues and interpretations. Journal of Hydrology, 2000, 227: 1-20.
[3]  唐巍, 李殿璞, 陈学允. 混沌理论及其应用研究[J]. 电力系统自动化, 2000, 4: 67-70. TANG Wei, LI Dianpu and CHEN Xueyun. Chaos theory and its application. Automation of Electric Power Systems, 2000, 4: 67-70. (in Chinese)
[4]  石教智, 陈晓宏, 林汝颜. 东江流域降水时间序列的混沌特征分析[J]. 中山大学学报, 2006, 45(4): 111-115. SHI Jiaozhi, CHEN Xiaohong and LIN Ruyan. Chaotic charac- teristics of precipitation time series in the Dongjiang River Val- ley. Journal of Zhongshan University, 2006, 45(4): 111-115. (in Chinese)
[5]  王海燕, 盛昭瀚. 混沌时间序列相空间重构参数的选取方法[J]. 东南大学学报, 2009, 30(5): 113-117. WANG Haiyan, SHENG Shaohan. Choice of the parameters for the phase space reconstruction of chaotic time series. Journal of Southeast University, 2009, 30(5): 113-117. (in Chinese)
[6]  袁鹏, 李谓新, 王文圣, 等. 月降水量时间序列中的混沌现象[J]. 四川大学学报, 2002, 34(1): 16-19. YUAN Peng, LI Weixin, WANG Wensheng, et al. Chaos analy- sis of monthly precipitation time series. Journal of Sichuang University, 2002, 34(1): 16-19. (in Chinese)
[7]  王红瑞, 宋宇, 刘昌明, 等. 混沌理论及在水科学中的应用与存在的问题[J]. 水科学进展, 2005, 15(3): 400-407. WANG Hongrui, SONG Yu, LIU Changming, et al. Application and issues of chaos theory in hydro-science. Advances in Water Sci-ence, 2005, 15(3): 400-407. (in Chinese)
[8]  DHANYA, C. T., KUMAR, N. D. Nonlinear ensemble predict- tion of chaotic daily rainfall. Advances in Water Resources, 2010, 33(3): 327-347.
[9]  黄国如, 芮孝芳. 流域降水径流时间序列的混沌识别及其预测研究进展[J]. 水科学进展, 2004, 15(2): 255-260. HUANG Guoru, RUI Xiaofang. Study advances in diagnosis of chaotic behavior and its prediction for rainfall and stream flow time series in watershed. Advances in Water Science, 2005, 15(2): 400-407. (in Chinese)
[10]  门宝辉, 赵燮京, 梁川. 长江上游川中地区降水时间序列的混沌分析[J]. 长江科学院院报, 2004, 21(1): 43-46. MEN Baohui, ZHAO Xiejing and LIANG Chuan. Chaos analy- sis on precipitation time serial in Sichuan middle region of Yangtze River upstream reaches. Journal of Yangtze River Sci- entific Research Institute, 2004, 21(1): 43-46. (in Chinese)
[11]  丁胜祥, 杨新意. 宜昌站月径流时间序列的混沌特性分析[J]. 人民长江, 2009, 40(22): 32-35. DING Shengxiang, YANG Xinyi. Chaos analysis of monthly runoff time series at Yichang hydrologic station of the Yangtze River. Yangtze River, 2009, 40(22): 32-35. (in Chinese)
[12]  NG, W. W., PANU, U. S. and LENNOX, W. C. Chaos based analytical techniques for daily extreme hydrological observa- tions. Journal of Hydrology, 2007, 342: 17-41.
[13]  王平立, 宋斌, 王玲. 混沌时间序列的Kolmogorov熵的应用研究[J]. 计算机工程与应用, 2006, 21: 162-164. WANG Pinli, SONG Bin and WANG Lin. Study on Kolmo- gorov entropy based on chaotic time series. Journal of Computer Engineering and Applications, 2006, 21: 162-164. (in Chinese)

Full-Text

comments powered by Disqus