All Title Author
Keywords Abstract


Nature of First-Order Transition in Planar Rotator Model with Modified Potential

DOI: 10.4236/jmp.2013.41020, PP. 140-145

Keywords: XY-Model, Spin Wave, Vortices

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have carried out micro-canonical Monte Carlosimulations of a planar rotator model in 30 × 30 lattice using periodic boundary conditions. The energy distribution of the rotator in the lattice shows features that can be associated with spin wave and vortex excitations. The results supplement the first-order transition observed in canonicalMonte Carlosimulation, due to vortex nucleation. We also see features that can be associated with the in-homogeneity of vortex charge in the critical region.

References

[1]  J. Renn and D. Hoffmann, “1905—A Miraculus Year,” Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 38, No. 9, 2005, pp. S437-S448.
[2]  O. G. Mouritsen, “Computer Studies of Phase Transitions and Critical Phenomena,” Springer, Berlin, 1984. doi:10.1007/978-3-642-69709-8
[3]  K. Binder, “Theory of First-Order Phase Transitions,” Reports on Progress in Physics, Vol. 50, No. 7, 1987, pp. 783-859. doi:10.1088/0034-4885/50/7/001
[4]  H. Gould and J. Tobochnik, “An Introduction to Computer Simulation Methods (Applications to Physical Systems, Part 2),” Addition-Wesley, New York, 1988.
[5]  M. N. Barber, “Phase Transitions in Two Dimensions,” Physics Reports, Vol. 59, No. 4, 1980, pp. 375-409. doi:10.1016/0370-1573(80)90026-5
[6]  L. J. de Jongh and A. R. Miedema, “Experiments on Simple Magnetic Model System,” Advances in Physics, Vol. 50, No. 8, 2001, pp. 947-1170. doi:10.1080/00018730110101412
[7]  I. Morgenstern, K. A. Müller and J. G. Bednorz, “Numerical Simulations of a High-Tc Superconductive Glass Model,” Zeitschrift für Physik B Condensed Matter, Vol. 69, No. 1, 1987, pp. 33-47. doi:10.1007/BF01560607
[8]  N. Goldenfeld, “Lectures on Phase Transition and Renormalization Group,” Addison-Wesley, Reading, 1992.
[9]  N. D. Mermin and H. Wagner, “Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimen- sional Isotropic Heisenberg Models,” Physical Review Letters, Vol. 17, No. 22, 1966, pp. 1133-1136. doi:10.1103/PhysRevLett.17.1133
[10]  V. L. Berezinskii, “Destruction of Long Range Order in One Dimensional and Two Dimensional Systems Having a Continuous Symmetry Group I. Classical Systems,” Soviet Physics JETP, Vol. 32, 1971, pp. 493-500.
[11]  J. M. Kosterlitz and D. J. Thouless, “Long Range Order and Metastability in Two Dimensional Solids and Superfluids. (Application of Dislocation Theory),” Journal of Physics C: Solid State Physics, Vol. 7, No. 6, 1974, p. 1046. doi:10.1088/0022-3719/7/6/005
[12]  F. J. Wegner, “Spin-Ordering in a Planar Classical Heisenberg Model,” Zeitschrift für Physik, Vol. 206, No. 5, 1967, pp. 465-470. doi:10.1007/BF01325702
[13]  V. L. Berezinskii, Soviet Physics JETP, Vol. 34, 1971, p. 610.
[14]  J. Zittartz, “Phase Transition of the Two-Dimensional Classical XY-Model,” Zeitschrift fur Physik B, Vol. 23, No. 1, 1976, pp. 55-69.
[15]  J. V. Jose, L. P. Kadanoff, S. Kirkpatrick and D. J. Nelson, “Renormalization, Vortices and Symmetry-Breaking Perturbations in the Two-Dimensional Planar Model,” Physical Review B, Vol. 16, No. 3, 1977, pp. 1217-1241. doi:10.1103/PhysRevB.16.1217
[16]  C. Kawabata and K. Binder, “Evidence for Vortex Formation in Monte Carlo Studies of the Two-Dimensional XY-Model,” Solid State Communications, Vol. 22, No. 11, 1977, pp. 705-710. doi:10.1016/0038-1098(77)90255-1
[17]  S. Miyashita, H. Nishimori, A. Kuroda and M. Suzuki, “Monte Carlo Simulation and Static and Dynamic Critical Behavior of the Plane Rotator Model,” Progress of Theoretical Physics, Vol. 60, No. 6, 1978, 1669-1685. doi:10.1143/PTP.60.1669
[18]  J. Tobochnik and G. V. Chester, “Monte Carlo Study of the Planar Spin Model,” Physical Review B, Vol. 20, No. 9, 1979, pp. 3761-3769. doi:10.1103/PhysRevB.20.3761
[19]  W. J. Shugard, J. D. Weeks and G. H. Gilmer, “Monte-Carlo Simulation of the Planar Model Using the Dual Solid-On-Solid Representation,” Vol. 21, No. 11, 1980, pp. 5309-5311. doi:10.1103/PhysRevB.21.5309
[20]  J. E. van Himbergen and S. Chakravarty, “Helicity Modulus and Specific Heat of Classical XY Model in Two Dimensions,” Physical Review B, Vol. 23, No. 1, 1984, pp. 359-361. doi:10.1103/PhysRevB.23.359
[21]  H. Betsuyaku, “Monte Carlo Renormalization of Kadanoff Block Transformation in the 2-d Plane-Rotator Model,” Physica A, Vol. 106, No. 1, 1981, pp. 311-325. doi:10.1016/0378-4371(81)90229-6
[22]  J. F. Fernandes, M. F. Ferreira and J. Stankiewicz, “Critical Behavior of the Two Dimensional XY Model: A Monte Carlo Simulation,” Physical Review B, Vol. 34, No. 1, 1986, pp. 292-300. doi:10.1103/PhysRevB.34.292
[23]  N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, Journal of Chemical Physics, Vol. 21, 1953, p. 1087.
[24]  R. Gupta, J. Delapp, G. G. Batrouni, G. C. Fox, C. F. Baillie and J. Apostolakis, “Phase Transition in the 2D XY Model,” Physical Review Letters, Vol. 61, No. 17, 1988, pp. 1996-1999. doi:10.1103/PhysRevLett.61.1996
[25]  R. Gupta and C. F. Baillie, “Critical Behavior of the Two-Dimensional XY Model,” Physical Review B, Vol. 45, No. 6, 1992, pp. 2883-2898. doi:10.1103/PhysRevB.45.2883
[26]  U. Wolff, “Collective Monte Carlo Updating in a High Precision Study of X-Y Model,” Nuclear Physics B, Vol. 322, No. 3, 1989, pp. 759-774. doi:10.1016/0550-3213(89)90236-8
[27]  J. Kogut and J. Polonyi, “Microcanonical Study of the Planar Spin Model,” Nuclear Physics B, Vol. 265, 1986, pp. 313-323. doi:10.1016/0550-3213(86)90312-3
[28]  E. Domany, M. Schick, R. H. Swendsen, “First-Order Transition in an xy Model with Nearest-Neighbor Interactions,” Physical Review Letters, Vol. 52, No. 17, 1984, pp. 1535-1538. doi:10.1103/PhysRevLett.52.1535
[29]  J. E. van Himbergen, “From Continuous to First-Order Transition in a Simple XY Model,” Physical Review Letters, Vol. 53, No. 1, 1984, pp. 5-8. doi:10.1103/PhysRevB.29.6387
[30]  J. E. Hirsh, “Charge-Density-Wave to Spin-Density-Wave Transition in the Extended Hubbard Model,” Physical Review Letters, Vol. 53, No. 24, 1984, pp. 2327-2330. doi:10.1103/PhysRevLett.53.2327
[31]  H. J. F. Knops, “First-Order Transition in the XY Model,” Physical Review B, Vol. 30, No. 1, 1984, pp. 470-472. doi:10.1103/PhysRevB.30.470
[32]  J. E. van Himbergen, “Kosterlitz-Thouless Transitions in Simple Spin Models with Strongly Varying Vortex Densities,” Solid State Communications, Vol. 55, No. 4, 1985, pp. 289-193. doi:10.1016/0038-1098(85)90610-6
[33]  D. Frenkel and R. Eppenga, “Evidence for Algebraic Orientational Order in a Two-Dimensional Hard-Core Nematic,” Physical Review A, Vol. 31, No. 3, 1985, pp. 1776-1787. doi:10.1103/PhysRevA.31.1776
[34]  K. J. Strandburg, “Two-Dimensional Melting,” Reviews of Modern Physics, Vol. 60, No. 1, 1988, pp. 161-207. doi:10.1103/RevModPhys.60.161
[35]  J. R. Lee and S. Teitel, “New Critical Behavior in the Dense Two-Dimensional Classical Coulomb Gas,” Physical Review Letters, Vol. 64, No. 13, 1990, pp. 1483-1486. doi:10.1103/PhysRevLett.64.1483
[36]  M. J. P. Gingras, P. C. W. Holdsworth and B. Bergersen, “Monte Carlo Study of Induced Bond Orientational Ordering in Two-Dimensional Liquid-Crystal Models,” Physical Review A, Vol. 41, No. 12, 1990, pp. 6786-6795. doi:10.1103/PhysRevA.41.6786
[37]  T. Garel, J. C. Niel and H. Orland, “Disorder Lines and Nonmonotonous Renormalization Group Flows: Application to the Two-Dimensional XY-Model,” Europhysics Letters, Vol. 11, No. 4, 1990, pp. 349-354. doi:10.1209/0295-5075/11/4/010
[38]  P. Olsson and P. Minnhagen, “Interplay between One- and Two-Dimensional Fluctuations for a Class of XY Models,” Physical Review B, Vol. 43, No. 4, 1991, pp. 3356-3361. doi:10.1103/PhysRevB.43.3356
[39]  S. E. Korshunov, “Disorder Induced First-Order Transition in Superconducting Flims,” Physical Review B, Vol. 46, No. 10, 1992, pp. 6615-6617. doi:10.1103/PhysRevB.46.6615
[40]  A. Jonsson, P. Minnhagen and M. Nylén, “New Critical Point for Two Dimensional XY-Type Models,” Physical Review Letters, Vol. 70, No. 9, 1993, pp. 1327-1330. doi:10.1103/PhysRevLett.70.1327
[41]  G. M. Zhang, H. Chen and X. Wu, “First-Order Transition in the Dense Two-Dimensional Classical Coulomb Gas,” Physical Review B, Vol. 48, No. 16, 1993, pp. 12304-12307. doi:10.1103/PhysRevB.48.12304
[42]  F. Mila, “First-Order versus Kosterlitz-Thouless Transition in a Class of Modified XY-Model,” Physical Review B, Vol. 47, No. 1, 1993, pp. 442-445. doi:10.1103/PhysR evB.47.442
[43]  C. Timm, “Flux Noise in High-Temperature Superconductors,” Physical Review B, Vol. 55, No. 5, 1997, pp. 3241-3248. doi:10.1103/PhysRevB.55.3241
[44]  A. Jonsson and P. Minnhagen, “Complex Impedance of a Two-Dimensional Josephson Junction Array,” Physica C, Vol. 277, No. 3-4, 1997, pp. 161-169. doi:10.1016/S0921-4534(97)00098-1
[45]  A. Jonsson and P. Minhagen, “Characteristics of Two-Dimensional Vortex Dynamics from XY-Type Models with Ginzburg-Landau Dynamics,” Physical Review B, Vol. 55, No. 14, 1997, pp. 9035-9046. doi:10.1103/PhysRevB.55.9035
[46]  Ch. Dellago and H. A. Posch, “Lyapunov Instability in the Extended XY-Model: Equilibrium and Non Equilibrium Molecular Dynamics Simulations,” Physica A, Vol. 237, No. 1, 1997, pp. 95-112. doi:10.1016/S0378-4371(96)00423-2
[47]  G. Alvarez and H. Fort, “On the Nature of the Phase Transition Triggered by Vortex-Like Defects in the 2D Ginzburg-Landau Model,” Physics Letters A, Vol. 282, No. 6, 2001, pp. 399-406. doi:10.1016/S0375-9601(01)00210-9
[48]  K. Medvedyeva, B. J. Kim and P. Minnhagen, “Ubiquitous Finite-Size Scaling Features in I-V Characteristics of Various Dynamic XY Models in Two Dimensions,” Physica C, Vol. 355, No. 1-2, 2001, pp. 6-14. doi:10.1016/S0921-4534(01)00026-0
[49]  M. Creutz, “Microcanonical Monte Carlo simulation,” Physical Review Letters, Vol. 50, No. 19, 1983, pp. 1411-1414. doi:10.1103/PhysRevLett.50.1411
[50]  S. Ota, S. B. Ota and M. F?hnle, “Microcanonical Monte Carlo Simulation for the Two-Dimensional XY Model,” Journal of Physics: Condensed Matter, Vol. 4, No. 24, 1992, pp. 5411-5418. doi:10.1088/0953-8984/4/24/011
[51]  D. P. Landau, S. H. Tsai and M. Exler, “A New Approach to Monte Carlo Simulations in Statistical Physics: Wang-Landau Sampling,” American Journal of Physics, Vol. 72, No. 10, 2004, pp. 1294-1302. doi:10.1119/1.1707017
[52]  O. Hammrich, “New Multiple Histogram Method for Studying Phase Transition,” Zeitschrift fur Physik B, Vol. 92, No. 4, 1993, pp. 501-505. doi:10.1007/BF01320513
[53]  K. G. Wilson and J. Kogut, “The Renormalization Group and the e Expansion,” Physics Reports, Vol. 12, No. 2, 1974, pp. 75-200. doi:10.1016/0370-1573(74)90023-4
[54]  P. A. Rikvold and B. M. Gorman, In: D. Stauffer, Ed., Annual Reviews of Computational Physics I, World Scientific, Singapore City, 1994.
[55]  D. H. E. Gross, “Microcanonical Thermodynamics and Statistical Fragmentation of Dissipative Systems,” Physics Reports, Vol. 279, No. 3, 1997, pp. 119-201. doi:10.1016/S0370-1573(96)00024-5
[56]  W. Janke, “Canonical versus Microcanonical Analysis of First-Order Phase Transitions,” Nuclear Physics B, Vol. 63, No. 1-3, 1998, pp. 631-633.
[57]  S. B. Ota and S. Ota, “Vortices in the 2d Classical XY-Model: A Microcanonical Monte Carlo Simulation Study,” Physics Letters A, Vol. 206, No. 1-2, 1995, pp. 133-136. doi:10.1016/0375-9601(95)00588-T
[58]  S. B. Ota and S. Ota, “Inhomogeneity of Vortex Charge in the 2D Classical XY Model,” Physics Letters A, Vol. 241, No. 1, 1998, pp. 127-130. doi:10.1016/S0375-9601(98)00034-6

Full-Text

comments powered by Disqus