All Title Author
Keywords Abstract


Effect of colony morphology variation of Burkholderia pseudomallei on intracellular survival and resistance to antimicrobial environments in human macrophages in vitro

DOI: 10.1186/1471-2180-10-303

Full-Text   Cite this paper   Add to My Lib

Abstract:

Morphotype was associated with survival in the presence of H2O2 and antimicrobial peptide LL-37, but not with susceptibility to acid, acidified sodium nitrite, or resistance to lysozyme, lactoferrin, human neutrophil peptide-1 or human beta defensin-2. Incubation under anaerobic conditions was a strong driver for switching of type III to an alternative morphotype. Differences were noted in the survival and replication of the three types following uptake by human macrophages, but marked strain-to strain-variability was observed. Uptake of type III alone was associated with colony morphology switching.Morphotype is associated with phenotypes that alter the ability of B. pseudomallei to survive in adverse environmental conditions.Burkholderia pseudomallei is an environmental Gram-negative bacterium that causes a severe and often fatal disease called melioidosis. This is an important cause of sepsis in south-east Asia and northern Australia, a geographic distribution that mirrors the presence of B. pseudomallei in the environment [1]. Melioidosis may develop following bacterial inoculation or inhalation and occurs most often in people with regular contact with contaminated soil and water [1]. Clinical manifestations of melioidosis are highly variable and range from fulminant septicemia to mild localized infection. The overall mortality rate is 40% in northeast Thailand (rising to 90% in patients with severe sepsis) and 20% in northern Australia [1,2].A major feature of melioidosis is that bacterial eradication is difficult to achieve. Fever clearance time is often prolonged (median 8 days), antimicrobial therapy is required for 12-20 weeks, and relapse occurs in around 10% of patients despite an appropriate course of antimicrobial therapy [3,4]. The basis for persistence in the infected human host is unknown, although several observations made to date may be relevant to the clinical behaviour of this organism [2,5]. B. pseudomallei can resist the action of bactericidal

Full-Text

comments powered by Disqus