全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

Tillage, Crop Rotation, and Cultural Practice Effects on Dryland Soil Carbon Fractions

Influence of Conservation Tillage and Soil Water Content on Crop Yield in Dryland Compacted Alfisol of Central Chile

Greenhouse Gas Flux and Crop Productivity after 10 Years of Reduced and No Tillage in a Wheat-Maize Cropping System

Effect of tillage, rotation and crop residues on wheat crop productivity, fertilizer nitrogen and water use efficiency and soil organic carbon status in dry area (rainfed) of north-west Pakistan

Effect of tillage, rotation and crop residues on wheat crop productivity, fertilizer nitrogen and water use efficiency and soil organic carbon status in dry area (rainfed) of north-west Pakistan

Effect of tillage, rotation and crop residues on wheat crop productivity, fertilizer nitrogen and water use efficiency and soil organic carbon status in dry area (rainfed) of north-west Pakistan

Tillage Method and Seed Rate Effects on Dryland Winter Wheat

Influence of Conservation Tillage and Soil Water Content on Crop Yield in Dryland Compacted Alfisol of Central Chile Influencia de la Labranza de Conservación y el Contenido de Agua sobre el Rendimiento del Cultivo en un Alfisol compactado del Secano Central de Chile

Response of Dryland Wheat Production and Precipitation Water Productivity to Planting Date

Crescimento e produtividade da cana planta cultivada em diferentes sistemas de preparo do solo e de colheita = Sugarcane growth and productivity under different tillage and crop systems

更多...
Agriculture  2013 

Crop and Tillage Effects on Water Productivity of Dryland Agriculture in Argentina

DOI: 10.3390/agriculture3010001

Keywords: water productivity, cereals, oilseeds, trade price, energy contents

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rising demands for food and uncertainties about climate change call for a paradigm shift in water management with a stronger focus on rainfed agriculture. The objective here was to estimate water productivity of different crops under no-till (NT) and conventional till (CT), in order to identify rotations that improve the water productivity of dryland agriculture. We hypothesized that NT and cereal crops would have a positive effect on overall water productivity. Crop yield and water use data were obtained from a 15 year experiment (1993 to 2008) on an entic Haplustoll in the semiarid Pampa, Argentina, with a rotation of wheat ( Triticum aestivum L.), corn ( Zea mays L.), sunflower ( Helianthus annus), and soybean ( Glycine max L. Merr.) . The results indicated an improved water productivity of all crops under NT compared with that of CT; however, the response of cereals (corn +1.0 kg ha ?1 mm ?1, wheat +1.3 kg ha ?1 mm ?1) was higher than that of sunflower (+0.3 kg ha ?1 mm ?1) and soybean (+0.5 kg ha ?1 mm ?1). Crop type had a higher impact on water productivity than did tillage system. In agreement with our hypothesis, cereal crops were more efficient (corn 9.8 and wheat 6.9 kg ha ?1 mm ?1) compared with soybean 2.4 and sunflower 3.9 kg mm ?1, but the economic water productivity of sunflower (0.9 US$ ha ?1 mm ?1) almost equaled that of wheat (1.1 US$ ha ?1mm ?1) and corn (1.2 US$ ha ?1 mm ?1). We concluded that the use of the synergy between NT and water efficient crops could be a promising step towards improving food production in semiarid regions.

References

[1]  Rockstr?m, J.; Karlberg, L.; Wani, S.P.; Barron, J.; Hatibu, N.; Oweis, T.; Bruggeman, A.; Farahani, J.; Qiang, Z. Managing water in rainfed agriculture—The need for a paradigm shift. Agric. Water Manag. 2010, 97, 543–550, doi:10.1016/j.agwat.2009.09.009.
[2]  De Fraiture, C.; Molden, D.; Wichelns, D. Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture. Agric. Water Manag. 2010, 97, 495–501, doi:10.1016/j.agwat.2009.08.015.
[3]  Bossio, D.; Geheb, K.; Critchley, W. Managing water by managing land: Addressing land degradation to improve water productivity and rural livelihoods. Agric. Water Manag. 2010, 97, 536–542, doi:10.1016/j.agwat.2008.12.001.
[4]  Noellemeyer, E.; Frank, F.; Alvarez, C.; Morazzo, G.; Quiroga, A. Carbon contents and aggregation related to soil physical and biological properties under a land-use sequence in the semiarid region of central Argentina. Soil Tillage Res. 2008, 99, 179–190, doi:10.1016/j.still.2008.02.003.
[5]  Hatfield, J.L.; Sauer, T.J.; Prueger, J.H. Managing soils to achieve greater water use efficiency: A review. Agron. J. 2001, 280, 271–280.
[6]  Rockstr?m, J.; Kaumbutho, P.; Mwalley, J.; Nzabi, A.W.; Temesgen, M.; Mawenya, L.; Barron, J.; Mutua, J.; Damgaard-Larsen, S. Conservation farming strategies in East and Southern Africa: Yields and rain water productivity from on-farm action research. Soil Tillage Res. 2009, 103, 23–32, doi:10.1016/j.still.2008.09.013.
[7]  Pala, M.; Ryan, J.; Zhang, H.; Singh, M.; Harris, H. Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agric. Water Manag. 2007, 93, 136–144, doi:10.1016/j.agwat.2007.07.001.
[8]  Fernandez, R.; Quiroga, A.; Noellemeyer, E.; Funaro, D.; Montoya, J.; Hitzmann, B.; Peinemann, N. A study of the effect of the interaction between site-specific conditions, residue cover and weed control on water storage during fallow. Agric. Water Manag. 2008, 95, 1028–1040, doi:10.1016/j.agwat.2008.03.010.
[9]  Moret, D.; Arrue, J.; Lopez, M.; Gracia, R. Influence of fallowing practices on soil water and precipitation storage efficiency in semiarid Aragon (in Spain). Agric. Water Manag. 2006, 82, 161–176, doi:10.1016/j.agwat.2005.07.019.
[10]  Dardanelli, J.L.; Bachmeier, O.A.; Sereno, R.; Gil, R. Rooting depth and soil water extraction patterns of different crops in a silty loam Haplustoll. Field Crops Res. 1997, 54, 29–38, doi:10.1016/S0378-4290(97)00017-8.
[11]  Franzluebbers, A. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil and Tillage Res. 2002, 66, 197–205, doi:10.1016/S0167-1987(02)00027-2.
[12]  Baumhardt, R. Residue management and tillage effects on soil-water storage and grain yield of dryland wheat and sorghum for a clay loam in Texas. Soil and Tillage Res. 2002, 68, 71–82, doi:10.1016/S0167-1987(02)00097-1.
[13]  Nielsen, D.; Miller, P. Efficient water use in dryland cropping systems in the Great Plains. Agron. J. 2005, 372, 364–372, doi:10.2134/agronj2005.0364.
[14]  Ramakrishna, A.; Tam, H.M.; Wani, S.P.; Long, T.D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res. 2006, 95, 115–125, doi:10.1016/j.fcr.2005.01.030.
[15]  Schuller, P.; Walling, D.E.; Sepúlveda, A.; Castillo, A.; Pino, I. Changes in soil erosion associated with the shift from conventional tillage to a no-tillage system, documented using 137Cs measurements. Soil Tillage Res. 2007, 94, 183–192, doi:10.1016/j.still.2006.07.014.
[16]  Alletto, L.; Coquet, Y.; Justes, E. Effects of tillage and fallow period management on soil physical behaviour and maize development. Agric. Water Manag. 2011, 102, 74–85, doi:10.1016/j.agwat.2011.10.008.
[17]  Quiroga, A.; Funaro, D. Factores edáficos y de manejo que condicionan la eficiencia del barbecho en la región pampeana. Ciencia del Suelo 2005, 23, 79–86.
[18]  Fengrui, L.; Songling, Z.; Geballe, G.T. Water use patterns and agronomic performance for some cropping systems with and without fallow crops in a semi-arid environment of northwest China. Agric. Ecosyst. Environ. 2000, 79, 129–142, doi:10.1016/S0167-8809(99)00149-8.
[19]  Monzon, J.P.; Sadras, V.O.; Andrade, F.H. Modelled yield and water use efficiency of maize in response to crop management and Southern Oscillation Index in a soil-climate transect in Argentina. Field Crops Res. 2012, 130, 8–18, doi:10.1016/j.fcr.2012.02.001.
[20]  Ritchie, J.T.; Basso, B. Water use efficiency is not constant when crop water supply is adequate or fixed: The role of agronomic management. Eur. J. Agron. 2008, 28, 273–281, doi:10.1016/j.eja.2007.08.003.
[21]  Passioura, J. Increasing crop productivity when water is scarce—From breeding to field management. Agric. Water Manag. 2006, 80, 176–196, doi:10.1016/j.agwat.2005.07.012.
[22]  Xue, Q.; Zhu, Z.; Musick, J.T.; Stewart, B.A.; Dusek, D. Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. J. Plant Physiol. 2006, 163, 154–164, doi:10.1016/j.jplph.2005.04.026.
[23]  Purcell, L.C.; Edwards, J.T.; Brye, K.R. Soybean yield and biomass responses to cumulative transpiration: Questioning widely held beliefs. Field Crops Res. 2007, 101, 10–18, doi:10.1016/j.fcr.2006.09.002.
[24]  Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Res. 2008, 108, 1–13, doi:10.1016/j.fcr.2008.03.001.
[25]  Calvin, P.A. Interannual variation in soybean yield: Interaction among rainfall, soil depth and crop management. Field Crops Res. 1999, 63, 237–246, doi:10.1016/S0378-4290(99)00040-4.
[26]  Alvarez, R.; Steinbach, H.S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15, doi:10.1016/j.still.2009.02.005.
[27]  Lal, R.; Reicosky, D.C.; Hanson, J.D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res. 2007, 93, 1–12, doi:10.1016/j.still.2006.11.004.
[28]  Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535, doi:10.1016/j.agwat.2009.03.023.
[29]  Argentinean Ministry of Agriculture, official FOB prices. or www.minagri.gov.ar (accessed on 06 May 2012).

Full-Text

comments powered by Disqus