全部 标题 作者
关键词 摘要

Agriculture  2013 

Pyrolysis Kinetics of Physical Components of Wood and Wood-Polymers Using Isoconversion Method

DOI: 10.3390/agriculture3010012

Keywords: bioenergy, torrefaction, hardwood components, activation energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Two hardwood species, namely red oak and yellow-poplar, were separated into their bark, sapwood and heartwood components. The samples were tested for calorific value, specific gravity, proximate analysis, mineral composition, chemical composition, ultimate analysis, and thermo-chemical decomposition behavior. In addition, the thermo-chemical decomposition behaviors of cellulose, xylan, and lignin polymers were also tested. Thermo-chemical decomposition behavior was assessed using a thermo-gravimetric (TGA) system by heating the sample from 50 °C to 700 °C at the heating rates of 10, 30 and 50 °C/min under nitrogen. The activation energy was calculated for various fractional conversion values using the isoconversion method. The results showed that char yields of lignin, cellulose and xylan were 41.43%, 4.45% and 1.89%, respectively, at the end of pyrolysis. Furthermore, cellulose, xylan and lignin decomposed dramatically in the temperature range of 320 °C to 360 °C, 150 °C to 230 °C and 100 °C to 410 °C, respectively, with decomposition peaks occurring at 340 °C, 200 °C and 340 °C, respectively. In addition, the maximum activation energy for cellulose was 381 kJ/mol at 360 °C and for xylan it was 348 kJ/mol at 210 °C.

References

[1]  Demirbas, A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 2005, 31, 171–192, doi:10.1016/j.pecs.2005.02.002.
[2]  Biagini, E.; Barontini, F.; Tognotti, L. Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique. Ind. Eng. Chem. Res. 2006, 45, 4486–4493, doi:10.1021/ie0514049.
[3]  Lifecycle Greenhouse Gas Emissions Due to Increased Biofuel Production; ICF International: Fairfax, VA, USA, 2009. Available online: http://epa.gov/oms/renewablefuels/rfs2-peer-review-model.pdf (accessed on 9 January 2013).
[4]  Nitschke, C.R.; Innes, J.L. Integrating climate change into forest management in south-central British Columbia: An assessment of landscape vulnerability and development of a climate-smart framework. For. Ecol. Manag. 2008, 256, 313–327, doi:10.1016/j.foreco.2008.04.026.
[5]  Sharma, N.; Rowe, R. Managing the world’s forests. Financ. Dev. 1992, 29, 31.
[6]  Annual Energy Outlook 2012; Technical Report DOE/EIA-0383(2012) for EIA: Washington, DC, USA, 2012.
[7]  U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry; Technical Report for U.S. Department of Energy: Oak Ridge, TN, USA, 2011.
[8]  Balat, M. Biomass energy and biochemical conversion processing for fuels and chemicals. Energy Sources Part A Recovery Util. Environ. Eff. 2006, 28, 517–525.
[9]  McKendry, P. Energy production from biomass (part 2): Conversion technologies. Bioresour.Technol. 2002, 83, 47–54, doi:10.1016/S0960-8524(01)00119-5.
[10]  Panwar, N.L.; Kothari, R.; Tyagi, V.V. Thermo chemical conversion of biomass—Eco friendly energy routes. Renew. Sustain. Energy Rev. 2012, 16, 1801–1816, doi:10.1016/j.rser.2012.01.024.
[11]  Demirba?, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 2001, 42, 1357–1378, doi:10.1016/S0196-8904(00)00137-0.
[12]  Balat, M.; Balat, M.; K?rtay, E.; Balat, H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Convers. Manag. 2009, 50, 3147–3157.
[13]  Raveendran, K.; Ganesh, A.; Khilar, K.C. Pyrolysis characteristics of biomass and biomass components. Fuel 1996, 75, 987–998, doi:10.1016/0016-2361(96)00030-0.
[14]  Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2006, 20, 848–889, doi:10.1021/ef0502397.
[15]  Yaman, S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 2004, 45, 651–671, doi:10.1016/S0196-8904(03)00177-8.
[16]  Antal, M.J., Jr.; Gr?nli, M. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res 2003, 42, 1619–1640, doi:10.1021/ie0207919.
[17]  Beall, F.C.; Eickner, H.W. Thermal Degradation of Wood Components: A Review of the Literature; U.S. Forest Products Laboratory: Madison, WI, USA, 1970.
[18]  Gaur, S.; Reed, T.B. Thermal Data for Natural and Synthetic Fuels; Marcel Decker, Inc.: New York, NY, USA, 1998.
[19]  Slopiecka, K.; Bartocci, P.; Fantozzi, F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy 2012, 97, 491–497, doi:10.1016/j.apenergy.2011.12.056.
[20]  Herrera, A.; Soria, S.; de Araya, C. A kinetic study on the thermal decomposition of six hardwood species. Eur. J. Wood Wood Prod. 1986, 44, 357–360, doi:10.1007/BF02612744.
[21]  Kim, S.-S.; Jeon, J.-K.; Park, Y.-K.; Kim, S. Thermal pyrolysis of fresh and waste fishing nets. Waste Manag. 2005, 25, 811–817.
[22]  Kim, S.-S.; Kim, S. Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor. Chem. Eng. J. 2004, 98, 53–60, doi:10.1016/S1385-8947(03)00184-0.
[23]  ASAE Standards S269.4. In Cubes, Pellets, and Crumbles—Definitions and Methods for Determining Density, Durability, and Moisture Content; ASAE: St. Joseph, MI, USA, 1998.
[24]  ASTM Committee on Standards. In Standard Test Method for Gross Calorific Value of Coal and Coke; Standard No. ASTM D5865-98a; The American Society for Tesing and Materials: West Conshohocken, PA, USA, 1998.
[25]  ASTM Committee on Standards. In Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal; Standard No. ASTM D3174-12; The American Society for Tesing and Materials: West Conshohocken, PA, USA, 2011.
[26]  Kim, S.-S.; Agblevor, F.A. Pyrolysis characteristics and kinetics of chicken litter. Waste Manag. 2007, 27, 135–140, doi:10.1016/j.wasman.2006.01.012.
[27]  Corder, S.E. Properties and uses of bark as an energy source. In Proceedings of the XVI IUFRO World Congress, Oslo, Norway, 20 June–2 July 1976.
[28]  Adebayo, A.; Wang, J.; Dawson-Andoh, B.; McNeel, J.; Armstrong, J. Assessment of Appalachian hardwood residue properties and potentials for bioenergy utilization. Wood Fiber Sci. 2009, 41, 74–83.
[29]  Vincent, J.F. From cellulose to cell. J. Exp. Biol. 1999, 202, 3263–3268.
[30]  Miller, R.S.; Bellan, J. Analysis of reaction products and convertion time in the pyrolysis of cellulose and wood particles. Combust. Sci. Technol. 1996, 119, 331–373, doi:10.1080/00102209608952004.
[31]  Fengel, D.; Wegener, G. Wood Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany, 1984.
[32]  Wright, M.M.; Daugaard, D.E.; Satrio, J.A.; Brown, R.C. Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel 2010, 89, S2–S10, doi:10.1016/j.fuel.2010.07.029.
[33]  Xu, C.; Lad, N. Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water. Energy Fuels 2007, 22, 635–642.
[34]  Raveendran, K.; Ganesh, A.; Khilar, K.C. Influence of mineral matter on biomass pyrolysis characteristics. Fuel 1995, 74, 1812–1822, doi:10.1016/0016-2361(95)80013-8.
[35]  Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D.H.; Liang, D.T. Influence of mineral matter on pyrolysis of palm oil wastes. Combust. Flame 2006, 146, 605–611, doi:10.1016/j.combustflame.2006.07.006.
[36]  Ren, Q.; Zhao, C.; Wu, X.; Liang, C.; Chen, X.; Shen, J.; Tang, G.; Wang, Z. Effect of mineral matter on the formation of nox precursors during biomass pyrolysis. J. Anal. Appl. Pyrolysis 2009, 85, 447–453, doi:10.1016/j.jaap.2008.08.006.
[37]  Demirba?, A. Calculation of higher heating values of biomass fuels. Fuel 1997, 76, 431–434, doi:10.1016/S0016-2361(97)85520-2.
[38]  Adebayo, A.B. Pretreatments and Energy Potentials of Appalachian Hardwood Residues for Biofuel Production. Ph.D. Thesis, West Virginia University, Morgantown, WV, USA, 2010.
[39]  Usia, M.; Kara, S. The chemical composition of wood and bark of Cedrus libani A. Rich. Eur. J. Wood Wood Prod. 1997, 55, 268–268, doi:10.1007/BF02990561.
[40]  Schowalter, T.D.; Zhang, Y.L.; Sabin, T.E. Decomposition and nutrient dynamics of oak Quercus spp. logs after five years of decomposition. Ecography 1998, 21, 3–10, doi:10.1111/j.1600-0587.1998.tb00388.x.
[41]  Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788, doi:10.1016/j.fuel.2006.12.013.
[42]  Liu, Q.; Zhong, Z.; Wang, S.; Luo, Z. Interactions of biomass components during pyrolysis: A TG-FTIR study. J. Anal. Appl. Pyrolysis 2011, 90, 213–218, doi:10.1016/j.jaap.2010.12.009.
[43]  Qu, T.; Guo, W.; Shen, L.; Xiao, J.; Zhao, K. Experimental study of biomass pyrolysis based on three major components: Hemicellulose, cellulose, and lignin. Ind. Eng. Chem. Res. 2011, 50, 10424–10433, doi:10.1021/ie1025453.
[44]  Jeon, M.-J.; Jeon, J.-K.; Suh, D.J.; Park, S.H.; Sa, Y.J.; Joo, S.H.; Park, Y.-K. Catalytic pyrolysis of biomass components over mesoporous catalysts using PY-GC/MS. Catal. Today 2012. in press.
[45]  Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D.H.; Liang, D.T. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy Fuels 2005, 20, 388–393.
[46]  Bradbury, A.G.W.; Sakai, Y.; Shafizadeh, F. A kinetic model for pyrolysis of cellulose. J. Appl. Polym. Sci. 1979, 23, 3271–3280, doi:10.1002/app.1979.070231112.
[47]  Chen, W.-H.; Kuo, P.-C. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 2011, 36, 6451–6460, doi:10.1016/j.energy.2011.09.022.
[48]  Alvarez, V.A.; Vázquez, A. Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polym. Degrad. Stab. 2004, 84, 13–21, doi:10.1016/j.polymdegradstab.2003.09.003.
[49]  Ramiah, M.V. Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. J. Appl. Polym. Sci. 1970, 14, 1323–1337, doi:10.1002/app.1970.070140518.
[50]  Murugan, P.; Mahinpey, N.; Johnson, K.E.; Wilson, M. Kinetics of the pyrolysis of lignin using thermogravimetric and differential scanning calorimetry methods. Energy Fuels 2008, 22, 2720–2724, doi:10.1021/ef700730u.
[51]  Mirzaee, E.; Rafiee, S.; Keyhani, A.; Emam-Djomeh, Z. Determining of moisture diffusivity and activation energy in drying of apricots. Res. Agric. Eng. 2009, 55, 114–120.
[52]  Singh, K.; Zondlo, J.W.; Wang, J.; Sivanandan, L.; Brar, J.S. Influence of environmental decomposition of logging residues on fuel properties. Biol. Eng. Trans. 2012, 5, 163–176.
[53]  Beall, F. Thermogravimetric analysis of wood lignin and hemicelluloses. Wood. Fiber Sci. 1969, 1, 215–226.

Full-Text

comments powered by Disqus