全部 标题 作者
关键词 摘要

Agriculture  2013 

Pinto Beans (Phaseolus vulgaris L.) as a Functional Food: Implications on Human Health

DOI: 10.3390/agriculture3010090

Keywords: pinto beans, dry beans, functional food, phenolic compounds, legumes, nutraceuticals

Full-Text   Cite this paper   Add to My Lib

Abstract:

Most foods are considered functional in terms of providing nutrients and energy to sustain daily life, but dietary systems that are capable of preventing or remediating a stressed or diseased state are classified as functional foods. Dry beans ( Phaseolus vulgaris L.) contain high levels of chemically diverse components (phenols, resistance starch, vitamins, fructooligosaccharides) that have shown to protect against such conditions as oxidative stress, cardiovascular disease, diabetes, metabolic syndrome, and many types of cancer, thereby positioning this legume as an excellent functional food. Moreover, the United States has a rich dry bean history and is currently a top producer of dry beans in the world with pinto beans accounting for the vast majority. Despite these attributes, dry bean consumption in the US remains relatively low. Therefore, the objective of this manuscript is to review dry beans as an important US agricultural crop and as functional food for the present age with an emphasis on pinto beans.

References

[1]  Lyimo, M.; Mugula, J.; Elias, T. Nutritive composition of broth from selected bean varieties cooked for various periods. J. Sci. Food Agric. 1992, 58, 535–539, doi:10.1002/jsfa.2740580413.
[2]  Geil, P.B.; Anderson, J.W. Nutrition and health implications of dry beans: A review. J. Am. Coll. Nutr. 1994, 13, 549–558.
[3]  Mitchell, D.C.; Lawrence, F.R.; Hartman, T.J.; Curran, J.M. Consumption of dry beans, peas, and lentils could improve diet quality in the US population. J. Am. Diet Assoc. 2009, 109, 909–913, doi:10.1016/j.jada.2009.02.029.
[4]  USDA Web site. Available online: http://www.ams.usda.gov/mnreports/lsaba.pdf (accessed on 29 November 2012).
[5]  The Forum on Public Policy Web site. Available online: http://forumonpublicpolicy.com/archive06/uebersax.pdf (accessed on 29 November 2012).
[6]  Landon, A. The “how” of the three sisters: The origins of agriculture in Mesoamerica and the human niche. NE Anthropol. 2008, 40, 110–124.
[7]  FAO Web site. Available online: http://faostat.fao.org/site/339/default.aspx (accessed on 6 December 2012).
[8]  U.S. Dry Bean Yields per Acre by State, 1950–2010 (Table 050). USDA Web site. 2011. Available online: http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1394 (accessed on 25 November 2012).
[9]  Nebraska Dry Bean Production by Class, 1919–2010 (Table 030). USDA Web site. 2011. Available online: http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1394 (accessed on 25 November 2012).
[10]  USDA Economic Research Service Web site. Available online: http://www.ers.usda.gov/ Briefing/ DryBeans/PDFs/DBnOutlook.pdf (accessed on 27 October 2012).
[11]  Xu, B.; Chang, S.K.C. Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J. Agric. Food Chem. 2009, 57, 4754–4764, doi:10.1021/jf900695s.
[12]  Lucier, G.; Lin, B.H.; Allshouse, J.; Kantor, L.S. Factor affecting dry bean consumption in the United States. Econ. Res. Serv. 2000, VGS-280, 26–34.
[13]  USDA Web site. Available online: http://www.cnpp.usda.gov/Publications/USDAFoodPatterns/USDAFoodPatternsSummaryTable.pdf (accessed on 6 December 2012).
[14]  USDA Web site. Available online: http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5098765 (accessed on 9 December 2012).
[15]  Blaut, M. Relationship of prebiotics and food to intestinal microflora. Eur. J. Nutr. 2002, 41, I11–I16, doi:10.1007/s00394-002-1102-7.
[16]  Finley, J.W.; Burrell, J.B.; Reeves, P.G. Pinto bean consumption changes SCFA profiles in fecal fermentations, bacterial populations of the lower bowel, and lipid profiles in blood of humans. J. Nutr. 2007, 137, 2391–2398.
[17]  Lisa, T. Nutritional Information about Pinto Beans. Available online: http://www.livestrong.com/article/74379-nutritional-information-pinto-beans/ (accessed on 13 April 2012).
[18]  Weinstein, S.J.; Hartman, T.J.; Stolzenberg-solomon, R.; Pietinen, P.; Barrett, M.J.; Taylor, P. R.; Virtamo, J.; Albanes, D. Null association between prostate cancer and serum folate, vitamin B6, vitamin B12, and homocysteine. Cancer Epidemiol. Biomarkers Prev. 2003, 12, 1271–1272.
[19]  Zittoun, J. Anemias due to disorder of folate, vitamin B12 and transcobalamin metabolism. Rev. Prat. 1993, 43, 1358–1363.
[20]  Engin, K.N. α-tocopherol: Looking beyond an antioxidant. Mol. Vis. 2009, 15, 855–860.
[21]  Jiang, Q.; Christen, S.; Shigenaga, M.K.; Ames, B.N. γ-Tocopherol, the major form of vitamin E in the US diet deserves more attention. Am. Soc. Clin. Nutr. 2001, 74, 714–722.
[22]  Singh, U.; Devaraj, S.; Jialal, I. Vitamin E, oxidative stress, and inflammation. Annu. Rev. Nutr. 2005, 25, 151–174, doi:10.1146/annurev.nutr.24.012003.132446.
[23]  Cockayne, S.; Adamson, J.; Lanham-New, S.; Shearer, M.J.; Gilbody, S.; Torgerson, D.J. Vitamin K and the prevention of fractures. Arch. Intern. Med. 2006, 166, 1256–1261, doi:10.1001/archinte.166.12.1256.
[24]  Cheung, A.M.; Tile, L.; Lee, Y.; Tomlinson, G.; Hawker, G.; Scher, J.; Hu, H.; Veith, R.; Thompson, L.; Jamal, S.; et al. Vitamin K supplementation in postmenopausal women with osteopenia (ECKO Trial): A randomized controlled trial. PLoS Med. 2008, 5, 1–12, doi:10.1371/journal.pmed.0050001.
[25]  Suehiro, T.; Sugimachi, K.; Matsumata, T.; Itasaka, H.; Taketomi, A.; Maeda, T. Protein induced by Vitamin K absence or antagonist II as a prognostic marker in hepatocellular carcinoma. Cancer 1994, 73, 2464–2471, doi:10.1002/1097-0142(19940515)73:10<2464::AID-CNCR2820731004>3.0.CO;2-9.
[26]  Nimptsch, K.; Rohrmann, S.; Nieters, A.; Linseisen, J. Serum undercarboxylated osteocalcin as biomarker of Vitamin K intake and risk of prostate cancer: A nested case-control study in the Heidelberg cohort of the European perspective investigation in cancer and nutrition. Cancer Epidemiol. Biomarkers Prev. 2009, 18, 49–56, doi:10.1158/1055-9965.EPI-08-0554.
[27]  Das, U.N. Essential fatty acids: Biochemistry, physiology and pathology. Biotechnol. J. 2006, 1, 420–439, doi:10.1002/biot.200600012.
[28]  Kris-Etherton, P.M. Omega-3 fatty acids and cardiovascular disease: New recommendations from the American heart association. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 151–152, doi:10.1161/01.ATV.0000057393.97337.AE.
[29]  Leaf, A.; Kang, J.X.; Xiao, Y.-F. Fish oil fatty acids as cardiovascular drugs. Curr. Vasc. Pharmacol. 2008, 6, 1–12, doi:10.2174/157016108783331286.
[30]  Harris, W.S.; Miller, M.; Tighe, A.P.; Davidson, M.H.; Schaefer, E.J. Omega-3 fatty acids and coronary heart disease risk: Clinical and mechanistic perspectives. Atherosclerosis 2008, 197, 12–24, doi:10.1016/j.atherosclerosis.2007.11.008.
[31]  Simopoulos, A.P. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 1999, 70, 560S–569S.
[32]  Harper, C.R.; Jacobson, T.A. Beyond the Mediterranean diet: The role of omega-3 fatty acids in the prevention of coronary heart disease. Prev. Cardiol. 2003, 6, 136–146, doi:10.1111/j.1520-037X.2003.1332.x.
[33]  Winham, D.; Webb, D.; Barr, A. Beans and good health. Nutr. Today 2008, 5, 201–208, doi:10.1097/01.NT.0000303354.21347.45.
[34]  USDA Web site. Available online: http://ndb.nal.usda.gov/ndb/foods/list?format=&count=&max=25&sort=&fg=Legumes+and+Legume+Products&man=&lfacet=&qlookup=&offset=25 (accessed on 28 November 2012).
[35]  Reynoso-Camacho, R.; Ramos-Gomez, M.; Loarca-Pina, G. Bioactive Components in Common Beans (Phaseolus vulgaris L.). In Advances in Agricultural and Food Biotechnology; Guevara-González, R., Torres-pacheco, I., Eds.; Research Signpost: Trivandrum, India, 2006; pp. 217–236.
[36]  Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary polyphenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2012, doi:10.1089/ars.2012.4581.
[37]  Clifford, M.N. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med. 2004, 70, 1103–1114, doi:10.1055/s-2004-835835.
[38]  Pandey, K.B.; Rizvi, S.I. Current understanding of dietary polyphenols and their role in health and disease. Curr. Nutr. Food Sci. 2009, 5, 249–263, doi:10.2174/157340109790218058.
[39]  Spencer, J.P.; Abd El Mohsen, M.M.; Minihane, A.M.; Mathers, J.C. Biomarkers of the intake of dietary polyphenols: Strengths, limitations and application in nutrition research. Br. J. Nutr. 2008, 99, 12–22.
[40]  Scalbert, A.; Manach, C.; Morand, C.; Remesy, C. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306, doi:10.1080/1040869059096.
[41]  Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007, 8, 950–988, doi:10.3390/i8090950.
[42]  Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significan. Nutr. Rev. 1998, 56, 317–333, doi:10.1111/j.1753-4887.1998.tb01670.x.
[43]  Hollman, P.C.H. Absorption, bioavailability and metabolism of flavonoids. Pharm. Biol. 2004, 42, 74–83, doi:10.3109/13880200490893492.
[44]  Beecher, G.R. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J. Nutr. 2003, 133, 3248S–3254S.
[45]  Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96.
[46]  Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278, doi:10.4161/oxim.2.5.9498.
[47]  Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246, doi:10.3390/nu2121231.
[48]  Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747.
[49]  Beninger, C.W.; Hosfield, G.L. Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. J. Agric. Food Chem. 2003, 51, 7879–7883, doi:10.1021/jf0304324.
[50]  Macz-Pop, G.A.; González-Paramás, A.M.; Pérez-Alonso, J.J.; Rivas-Gonzalo, J.C. New flavanol-anthocyanin condensed pigments and anthocyanin composition in guatemalan beans (Phaseolus spp.). J. Agric. Food Chem. 2006, 54, 536–542, doi:10.1021/jf051913l.
[51]  Amarowicz, R.; Pegg, R.B. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 2008, 110, 865–878, doi:10.1002/ejlt.200800114.
[52]  Thompson, M.; Brick, M.A.; McGinley, J.N.; Thompson, H.J. Chemical composition and mammary cancer inhibitory activity of dry bean. Crop Sci. 2009, 49, 179–176, doi:10.2135/cropsci2008.04.0218.
[53]  Lin, L.-Z.; Harnly, J.M.; Pastor-Corrales, M.S.; Luthria, D.L. The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chem. 2008, 107, 399–410, doi:10.1016/j.foodchem.2007.08.038.
[54]  Treutter, D. Managing phenol contents in crop plants by phytochemical farming and breeding—Visions and constraints. Int. J. Mol. Sci. 2010, 11, 807–857, doi:10.3390/ijms11030807.
[55]  Madhujith, T.; Shahidi, F. Antioxidant potential of pea beans (Phaseolus vulgaris L.). J. Food Sci. 2005, 70, S85–S89, doi:10.1111/j.1365-2621.2005.tb09071.x.
[56]  Oomah, B.D.; Corbé, A.; Balasubramanian, P. Antioxidant and anti-inflammatory activities of bean (Phaseolus vulgaris L.) hulls. J. Agric. Food Chem. 2010, 58, 8225–8230, doi:10.1021/jf1011193.
[57]  Susan Marles, M.A.; Coulman, B.E.; Bett, E.K. Interference of condensed tannin in lignin analyses of dry Bean and forage crops. J. Agric. Food Chem. 2008, 56, 9797–9802, doi:10.1021/jf800888r.
[58]  Ferguson, L.R.; Chavan, R.R.; Harris, P.J. Changing concepts of dietary fiber: Implications for carcinogenesis. Nutr. Cancer 2001, 39, 155–169, doi:10.1207/S15327914nc392_1.
[59]  Doria, E.; Campion, B.; Sparvoli, F.; Tava, A.; Nielsen, E. Anti-nutrient components and metabolites with health implications in seeds of 10 common bean (Phaseolus vulgaris L. and Phaseolus lunatus L.) landraces cultivated in southern Italy. J. Food Compos. Anal. 2012, 26, 72–80, doi:10.1016/j.jfca.2012.03.005.
[60]  Vucenik, I.; Shamsuddin, A.M. Protection against cancer by dietary IP6 and inositol. Nutr. Cancer 2006, 55, 109–125, doi:10.1207/s15327914nc5502_1.
[61]  Bohn, L.; Meyer, A.S.; Rasmussen, S.K. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. J. Zhejiang Univ. Sci. B 2008, 9, 165–191.
[62]  EMBL-EBI Web site. Available online: http://www.ebi.ac.uk/chebi/ (accessed on 10 December 2012).
[63]  Luthria, D.L.; Pastor-Corrales, M.A. Phenolic acids content of fifteen dry edible bean (Phaseolus vulgaris L.) varieties. J. Food Compos. Anal. 2006, 19, 205–211, doi:10.1016/j.jfca.2005.09.003.
[64]  WHO Web site. Available online: http://www.who.int/whr/2007/en/index.html (accessed on 28 November 2012).
[65]  Darmadi-Blackberyy, I.; Wahiqvist, M.L.; Kouris-Blazos, B.; Steen, W.; Lukiot, W.; Horie, Y.; Hoire, K. Legumes: The most important dietary predictor of survival in older people of different ethnicities. Asia Pac. J. Clin. Nutr. 2004, 13, 217–220.
[66]  Bazzano, L.A.; Jiang, H.; Ogden, L.G.; Loria, C.; Vupputuri, S.; Myers, L.; Whelton, P.K. Legume consumption and risk of coronary heart disease in US mean and women. Arch. Intern. Med. 2001, 161, 2573–2578, doi:10.1001/archinte.161.21.2573.
[67]  Hertog, M.G.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen elderly study. Lancet 1993, 342, 1007–1011.
[68]  Hangen, L.; Bennink, M.R. Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutr. Cancer 2002, 44, 37–41.
[69]  Hughes, J.S.; Ganthavorn, C.; Wilson-Sanders, S. Dry beans inhibit azoxymethane-induced colon carcinogenesis in F344 rats. J. Nutr. 1997, 127, 2328–2333.
[70]  Correa, P. Epidemiological correlations between diet and cancer frequency. Cancer Res. 1981, 41, 3685–3690.
[71]  Fang, Y.-Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition 2002, 18, 872–879, doi:10.1016/S0899-9007(02)00916-4.
[72]  Ellis, E.M. Reactive carbonyls and oxidative stress: Potential for therapeutic intervention. Pharmacol. Ther. 2007, 115, 13–24, doi:10.1016/j.pharmthera.2007.03.015.
[73]  Manach, C.; Mazur, A.; Scalbert, A. Polyphenols and prevention of cardiovascular diseases. Curr. Opin. Lipidol. 2005, 16, 77–84.
[74]  Middleton, E.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751.
[75]  Espín, J.C.; García-Conesa, M.T.; Tomás-Barberán, F.A. Nutraceuticals: Facts and fiction. Phytochemistry 2007, 68, 2986–3008, doi:10.1016/j.phytochem.2007.09.014.
[76]  Yi, W.; Fischer, J.; Krewer, G.; Akoh, C.C. Phenolic compounds from blueberries can inhibit colon cancer cell proliferation and induce apoptosis. J. Agric. Food Chem. 2005, 53, 7320–7329, doi:10.1021/jf051333o.
[77]  Cao, J.J.; Gregoire, B.R.; Sheng, X.; Liuzzi, J.P. Pinto bean hull extract supplementation favorably affects markers of bone metabolism and bone structure in mice. Food Res. Int. 2010, 43, 560–566, doi:10.1016/j.foodres.2009.07.031.
[78]  Winham, D.M.; Hutchins, A.M.; Johnston, C.S. Pinto bean consumption reduces biomarkers for heart disease risk. J. Am. Coll. Nutr. 2007, 26, 243–249.
[79]  Xu, B.; Chang, S.K.C. Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines. Food Chem. 2012, 134, 1287–1296, doi:10.1016/j.foodchem.2012.02.212.
[80]  Oseguera-Toledo, M.E.; de Mejia, E.G.; Dia, V.P.; Amaya-Llano, S.L. Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-κB pathways. Food Chem. 2011, 127, 1175–1185, doi:10.1016/j.foodchem.2011.01.121.
[81]  Shutler, S.M.; Bircher, G.M.; Tredger, J.A.; Morgan, L.M.; Walker, A.F.; Low, A.G. The effect of daily baked beans (Phaseolus vulgaris) consumption on the plasma lipid levels of young, normo-cholesterolaemicmen. Br. J. Nutr. 1989, 61, 257–265, doi:10.1079/BJN19890114.
[82]  Anderson, J.W.; Gustafson, N.J.; Spencer, D.B.; Tietyen, J.; Bryant, C.A. Serum lipid response of hypercholesterolemic men to single and divided doses of canned beans. Am. J. Clin. Nutr. 1990, 51, 1013–1019.
[83]  Ambigaipalan, P.; Hoover, R.; Donner, E.; Liu, Q.; Jaiswal, S.; Chibbar, R.; Nantanga, K.K.M.; Seetharaman, K. Structure of faba bean, black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Res. Int. 2011, 44, 2962–2974, doi:10.1016/j.foodres.2011.07.006.
[84]  Campos-Vega, R.; Reynoso-Camacho, R.; Pedraza-Aboytes, G.; Acosta-Gallegos, J.A.; Guzman-Maldonado, S.H.; Paredes-Lopez, O.; Oomah, B.D.; Loarca-Pi?a, G. Chemical composition and in vitro polysaccharide fermentation of different beans (Phaseolus vulgaris L.). J. Food Sci. 2009, 74, T59.
[85]  Beninger, C.W.; Gu, L.; Prior, R.L.; Junk, D.C.; Vandenberg, A.; Bett, K.E. Changes in polyphenols of the seed coat during the after-darkening process in pinto beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2005, 53, 7777–7782.
[86]  Nathan, C. Points of control in inflammation. Nature 2002, 420, 846–852, doi:10.1038/nature01320.
[87]  Barton, G.M. A calculated response: Control of inflammation by the innate immune system. J. Clin. Investig. 2008, 118, 413–420, doi:10.1172/JCI34431.
[88]  Dinarello, C. Anti-inflammatory agents: Present and future. Cell 2010, 140, 935–950, doi:10.1016/j.cell.2010.02.043.
[89]  Kleinert, H.; Schwarz, P.M.; Forstermann, U. Regulation of the expression of inducible nitric oxide synthase. Biol. Chem. 2003, 500, 255–266.
[90]  Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric oxide synthases: Structure, function and inhibition. Biochem. J. 2001, 357, 593–615, doi:10.1042/0264-6021:3570593.
[91]  García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res. 2009, 58, 537–552, doi:10.1007/s00011-009-0037-3.
[92]  Yoon, J.-H.; Baek, S.J. Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med. J. 2005, 46, 585–596, doi:10.3349/ymj.2005.46.5.585.
[93]  Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202, doi:10.1016/S0163-7258(02)00298-X.
[94]  Middleton, E.; Kandaswami, C. Effects of flavonoids on immune and inflammatory cell functions. Biochem. Pharmacol. 1992, 43, 1167–1179, doi:10.1016/0006-2952(92)90489-6.
[95]  Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2045–2051, doi:10.1161/ATVBAHA.108.179705.
[96]  Wang, S.; Wu, D.; Matthan, N.R.; Lamon-Fava, S.; Lecker, J.L.; Lichtenstein, A.H. Reduction in dietary omega-6 polyunsaturated fatty acids: Eicosapentaenoic acid plus docosahexaenoic acid ratio minimizes atherosclerotic lesion formation and inflammatory response in the LDL receptor null mouse. Atherosclerosis 2009, 204, 147–155, doi:10.1016/j.atherosclerosis.2008.08.024.
[97]  Venter, C.S.; Vorster, H.H.; Cummins, J.H. Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am. J. Gastroenterol. 1990, 85, 549–553.
[98]  Hopps, E.; Noto, D.; Caimi, G.; Averna, M.R. A novel component of the metabolic syndrome: The oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 72–77, doi:10.1016/j.numecd.2009.06.002.
[99]  Tapsell, L.C. Diet and metabolic syndrome: Where does resistant starch fit in? J. AOAC Int. 2004, 87, 756–760.
[100]  Beyer-Sehlmeyer, G.; Glei, M.; Hartmann, E.; Hughes, R.; Persin, C.; B?hm, V.; Schubert, R.; Jahreis, G.; Pool-Zobel, B.L. Butyrate is only one of several growth inhibitors produced during gut flora-mediated fermentation of dietary fiber sources. Br. J. Nutr. 2007, 90, 1057–1070.
[101]  St-Onge, M.P.; Farnworth, E.R.; Jones, P.J. Consumption of fermented and nonfermented dairy products: Effects on cholesterol concentrations and metabolism. Am. J. Clin. Nutr. 2000, 71, 674–681.
[102]  The Bean Institute Web site. Available online: http://beaninstitute.com/dry-beans-in-the-diet-may-benefit-people-with-diabetes/ (accessed on 14 September 2012).
[103]  Lajolo, F.M.; Finardi, F.; Menezes, E.W. Amylase Inhibitors in Phaseolus vulgaris Beans. Food Technol. 1991, 45, 119–121.
[104]  Lajolo, F.M.; Genovese, M.I. Nutritional significance of lectins and enzyme inhibitors from legumes. J. Agric. Food Chem. 2002, 50, 6592–6598, doi:10.1021/jf020191k.
[105]  Livesey, G.; Taylor, R.; Hulshof, T.; Howlett, J. Glycemic response and health—A systematic review and meta-analysis: Relations between dietary glycemic properties and health outcomes. Am. J. Clin. Nutr. 2008, 87, 258S–268S.
[106]  CDC Web site. Available online: http://www.cdc.gov/Features/Cancer Statistics/ (accessed on 16 February 2012).
[107]  ACS Web site. Available online: http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-031941.pdf (accessed on 30 October 2012).
[108]  Bobe, G.; Barrett, K.G.; Mentor-Marcel, R.A.; Saffiotti, U.; Young, M.R.; Colburn, N.H.; Albert, P.S.; Bennink, M.R.; Lanza, E. Dietary cooked navy beans and their fractions attenuate colon carcinogenesis in azoxymethane-induced Ob/Ob mice. Nutr. Cancer 2008, 60, 373–381, doi:10.1080/01635580701775142.
[109]  Bawadi, H.; Bansode, R.R.; Trappey, A.; Truax, R.E.; Losso, J.N. Inhibition of Caco-2 colon, MCF-7 and Hs578T breast, and DU 145 prostatic cancer cell proliferation by water-soluble black bean condensed tannins. Cancer Lett. 2005, 218, 153–162, doi:10.1016/j.canlet.2004.06.021.
[110]  Nijveldt, R.J.; Nood, E.; Hoorn, D.E.C.; Boelens, P.G.; Norren, K.; Leeuwen, P.A.M. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425.
[111]  Garbisa, S.; Sartor, L.; Biggin, S.; Salvato, B.; Benelli, R.; Albini, A. Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate. Cancer 2001, 91, 822–831, doi:10.1002/1097-0142(20010215)91:4<822::AID-CNCR1070>3.0.CO;2-G.
[112]  Govers, M.J.; Gannon, N.J.; Dunshea, F.R.; Gibson, P.R.; Muir, J.G. Wheat bran affects the site of fermentation of resistant starch and luminal indexes related to colon cancer risk: A study in pigs. Gut 1999, 45, 840–847, doi:10.1136/gut.45.6.840.
[113]  Feregrino-Pérez, A.; Berumen, L.C.; García-Alcocer, G.; Guevara-Gonzalez, R.G.; Ramos-Gomez, M.; Reynoso-Camacho, R.; Acosta-Gallegos, J.; Loarca-Pi?a, G. Composition and chemopreventive effect of polysaccharides from common beans (Phaseolus vulgaris L.) on azoxymethane-induced colon cancer. J. Agric. Food Chem. 2008, 56, 8737–8744.
[114]  Le Leu, R.K.; Brown, I.L.; Hu, Y.; Morita, T.; Esterman, A.; Young, G.P. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats. Carcinogenesis 2007, 28, 1052S–1057S.
[115]  Diamant, M.; Blaak, E.E.; de Vos, W.M. Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes. Rev. 2011, 12, 272–281, doi:10.1111/j.1467-789X.2010.00797.x.
[116]  Collins, M.D.; Gibson, G.R. Probiotics, prebiotics, and synbiotics: Approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 1999, 69, 1052–1057.
[117]  Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031.
[118]  Roberfroid, M.B. Prebiotics: Preferential substrates for specific germs? 2001 , 73, 406S–409S.
[119]  Pereira, D.I.A.; Mccartney, A.L.; Gibson, G.R. An in vitro study of the probiotic potential of a bile-salt-hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties. Appl. Environ. Microbiol. 2003, 69, 4743–4752, doi:10.1128/AEM.69.8.4743-4752.2003.
[120]  Delzenne, N.M.; Kok, N. Effects of fructans-type prebiotics on lipid metabolism. Am. J. Clin. Nutr. 2001, 73, 456S–458S.
[121]  Henningsson, ?.M.; Margareta, E.; Nyman, G.L.; Bj?rck, I.M.E. Content of short-chain fatty acids in the hindgut of rats fed processed bean (Phaseolus vulgaris) flours varying in distribution and content of indigestible carbohydrates. Br. J. Nutr. 2007, 86, 379–389.

Full-Text

comments powered by Disqus