全部 标题 作者
关键词 摘要

Agriculture  2013 

Protein Hydrolysates from Agricultural Crops—Bioactivity and Potential for Functional Food Development

DOI: 10.3390/agriculture3010112

Keywords: plant-derived, protein hydrolysates, bioactive, techno-functional

Full-Text   Cite this paper   Add to My Lib

Abstract:

There has been an unprecedented demand for inexpensive plant-derived protein hydrolysates in recent years, owing to their potential nutritional applications. This review examines existing evidence regarding protein hydrolysates from agricultural crops such as wheat, soy, rapeseed, sunflower and barley. The bioactivity of these protein hydrolysates, including antioxidant and anti-inflammatory capabilities are discussed. In addition to evidence regarding their potential to enhance human nutrition, the effect of the hydrolysates on the techno-functional properties of foods will be reviewed.

References

[1]  Schaafsma, G. Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. Eur. J. Clin. Nutr. 2009, 63, 1161–1168, doi:10.1038/ejcn.2009.56.
[2]  Grimble, G.; Keohane, P.; Higgins, B.; Kaminski, M., Jr.; Silk, D. Effect of peptide chain length on amino acid and nitrogen absorption from two lactalbumin hydrolysates in the normal human jejunum. Clin. Sci. 1986, 71, 65–69.
[3]  Hartmann, R.; Meisel, H. Food-derived peptides with biological activity: From research to food applications. Curr. Opin. Biotech. 2007, 18, 163–169, doi:10.1016/j.copbio.2007.01.013.
[4]  Frokjaer, S. Use of hydrolysates for protein supplementation. Food Technol. 1994, 48, 86–88.
[5]  Nagodawithana, T.W.; Nelles, L.; Trivedi, N.B. Protein hydrolysates as hypoallergenic, flavors and pallatants for companion animals. In Protein Hydrolysates in Biotechnology; Pasupuleti, V.K., Demain, A.L., Eds.; Springer Dordrecht Heidelberg: New York, NY, USA, 2010; pp. 191–207.
[6]  Clemente, A. Enzymatic protein hydrolysates in human nutrition. Trends Food Sci. Tech. 2000, 11, 254–262, doi:10.1016/S0924-2244(01)00007-3.
[7]  Pasupuleti, V.K.; Holmes, C.; Demain, A.L. Applications of protein hydrolysates in biotechnology. In Protein Hydrolysates in Biotechnology; Pasupuleti, V.K., Demain, A.L., Eds.; Springer Dordrecht Heidelberg: New York, NY, USA, 2010; pp. 1–9.
[8]  Christians, N.E.; Garbutt, J.T.; Liu, D. Preemergence Weed Control Using Plant Protein Hydrolysate. U.S. patent 5,290,749, 1 March 1994.
[9]  Ranganathan, Y.; Patel, S.; Pasupuleti, V.K.; Meganathan, R. Protein hydrolysates from non-bovine and plant sources replaces tryptone in microbiological media. In Protein Hydrolysates in Biotechnology; Pasupuleti, V.K., Demain, A.L., Eds.; Springer Dordrecht Heidelberg: New York, NY, USA, 2010; pp. 115–125.
[10]  Mandalari, G.; Faulds, C.B.; Sancho, A.I.; Saija, A.; Bisignano, G.; LoCurto, R.; Waldron, K.W. Fractionation and characterisation of arabinoxylans from brewers’ spent grain and wheat bran. J. Cereal Sci. 2005, 42, 205–212, doi:10.1016/j.jcs.2005.03.001.
[11]  O’Toole, D.K. Characteristics and use of okara, the soybean residue from soy milk production a review. J. Agric. Food Chem. 1999, 47, 363–371, doi:10.1021/jf980754l.
[12]  Celus, I.; Brijs, K.; Delcour, J.A. Enzymatic hydrolysis of brewers’ spent grain proteins and technofunctional properties of the resulting hydrolysates. J. Agric. Food Chem. 2007, 55, 8703–8710, doi:10.1021/jf071793c.
[13]  Lahl, W.J.; Grindstaff, D.A. Spices and seasonings: Hydrolyzed proteins. In Proceedings of the 6th SIFST Symposium on Food Ingredients—Applications, Status and Safety, Singapore Institute of Food Science and Technology, Singapore, 27–29 April 1989; pp. 51–65.
[14]  Pasupuleti, V.K.; Braun, S. State of the art manufacturing of protein hydrolysates. In Protein Hydrolysates in Biotechnology; Pasupuleti, V.K., Demain, A.L., Eds.; Springer Dordrecht Heidelberg: New York, NY, USA, 2010; pp. 11–32.
[15]  Pedersen, B. Removing bitterness from protein hydrolysates. Food Technol. 1994, 48, 96–98.
[16]  Yee, J.; Shipe, W.; Kinsella, J. Antioxidant effects of soy protein hydrolysates on copper catalyzed methyl linoleate oxidation. J. Food Sci. 1980, 45, 1082–1083, doi:10.1111/j.1365-2621.1980.tb07525.x.
[17]  Pe?a-Ramos, E.A.; Xiong, Y. Antioxidant activity of soy protein hydrolysates in a liposomal system. J. Food Sci. 2002, 67, 2952–2956, doi:10.1111/j.1365-2621.2002.tb08844.x.
[18]  Pe?a-Ramos, E.A.; Xiong, Y.L. Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Sci. 2003, 64, 259–263.
[19]  Fan, J.; Saito, M.; Yanyan, Z.; Szesze, T.; Wang, L.; Tatusmi, E.; Li, L. Gel-forming ability and radical-scavenging activity of soy protein hydrolysate treated with transglutaminase. J. Food Sci. 2005, 70, C87–C92.
[20]  Moure, A.; Dominguez, H.; Parajo, J.C. Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process. Biochem. 2006, 41, 447–456.
[21]  Xin, W.; LianZhou, J.; Xia, W.; RuiHong, T. Study on alkaline protease hydrolysis of soy protein isolate and its antioxidant activity. Dongbei Nongye Daxue Xuebao 2011, 42, 24–31.
[22]  Roblet, C.; Amiot, J.; Lavigne, C.; Marette, A.; Lessard, M.; Jean, J.; Ramassamy, C.; Moresoli, C.; Bazinet, L. Screening of in vitro bioactivities of a soy protein hydrolysate separated by hollow fiber and spiral-wound ultrafiltration membranes. Food Res. Int. 2012, 46, 237–249, doi:10.1016/j.foodres.2011.11.014.
[23]  Zhang, S.B.; Wang, Z.; Xu, S.Y. Antioxidant and antithrombotic activities of rapeseed peptides. J. Am. Oil Chem. Soc. 2008, 85, 521–527, doi:10.1007/s11746-008-1217-y.
[24]  Xue, Z.; Yu, W.; Liu, Z.; Wu, M.; Kou, X.; Wang, J. Preparation and antioxidative properties of a rapeseed (Brassica napus) protein hydrolysate and three peptide fractions. J. Agric. Food Chem. 2009, 57, 5287–5293, doi:10.1021/jf900860v.
[25]  Pan, M.; Jiang, T.S.; Pan, J.L. Antioxidant activities of rapeseed protein hydrolysates. Food Bioprocess. Tech. 2011, 4, 1144–1152, doi:10.1007/s11947-009-0206-y.
[26]  Megías, C.; Pedroche, J.; Yust, M.M.; Girón-Calle, J.; Alaiz, M.; Millán, F.; Vioque, J. Affinity purification of copper-chelating peptides from sunflower protein hydrolysates. J. Agric. Food Chem. 2007, 55, 6509–6514.
[27]  Megías, C.; Pedroche, J.; Yust, M.M.; Girón-Calle, J.; Alaiz, M.; Millán, F.; Vioque, J. Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin. LWT Food Sci. Technol. 2008, 41, 1973–1977, doi:10.1016/j.lwt.2007.11.010.
[28]  Zhu, K.; Zhou, H.; Qian, H. Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process. Biochem. 2006, 41, 1296–1302.
[29]  Tang, C.H.; Peng, J.; Zhen, D.W.; Chen, Z. Physicochemical and antioxidant properties of buckwheat (Fagopyrum esculentum Moench) protein hydrolysates. Food Chem. 2009, 115, 672–678, doi:10.1016/j.foodchem.2008.12.068.
[30]  McCarthy, A.L.; O’Callaghan, Y.C.; Connolly, A.; Piggott, C.O.; FitzGerald, R.J.; O’Brien, N.M. In vitro antioxidant and anti-inflammatory effects of brewers’ spent grain protein rich isolate and its associated hydrolysates. Food Res. Int. 2013, 50, 205–212, doi:10.1016/j.foodres.2012.10.022.
[31]  Yokomizo, A.; Takenaka, Y.; Takenaka, T. Antioxidative activity of peptides prepared from okara protein. Food Sci. Technol. Res. 2002, 8, 357–359, doi:10.3136/fstr.8.357.
[32]  Zhu, Y.; Fan, J.; Cheng, Y.; Li, L. Improvement of the antioxidant activity of Chinese traditional fermented okara (Meitauza) using Bacillus subtilis B2. Food Control. 2008, 19, 654–661, doi:10.1016/j.foodcont.2007.07.009.
[33]  World Health Organisation 2009, Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. 2009. Available online: http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf (accessed on 2 July 2012).
[34]  Matsui, T.; ChunHui, L.; Tanaka, T.; Maki, T.; Osajima, Y.; Matsumoto, K. Depressor effect of wheat germ hydrolysate and its novel angiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism in rat and human plasma. Biol. Pharmaceut. Bull. 2000, 23, 427–431, doi:10.1248/bpb.23.427.
[35]  Li, C.H.; Matsui, T.; Matsumoto, K.; Yamasaki, R.; Kawasaki, T. Latent production of angiotensin I-converting enzyme inhibitors from buckwheat protein. J. Pept. Sci. 2002, 8, 267–274, doi:10.1002/psc.387.
[36]  Jia, J.; Ma, H.; Zhao, W.; Wang, Z.; Tian, W.; Luo, L.; He, R. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chem. 2010, 119, 336–342, doi:10.1016/j.foodchem.2009.06.036.
[37]  Van der Ven, C.; Gruppen, H.; de Bont, D.; Voragen, A.G.J. Optimisation of the angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology. Int. Dairy J. 2002, 12, 813–820, doi:10.1016/S0958-6946(02)00077-8.
[38]  Lenth, R.V. Response-Surface Methods in R, using rsm. J. Stat. Softw. 2009, 32, 1–17.
[39]  Wu, J.; Ding, X. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Res. Int. 2002, 35, 367–375, doi:10.1016/S0963-9969(01)00131-4.
[40]  Chiang, W.D.; Tsou, M.J.; Tsai, Z.Y.; Tsai, T.C. Angiotensin I-converting enzyme inhibitor derived from soy protein hydrolysate and produced by using membrane reactor. Food Chem. 2006, 98, 725–732, doi:10.1016/j.foodchem.2005.06.038.
[41]  Pihlanto, A.; Akkanen, S.; Korhonen, H.J. ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum). Food Chem. 2008, 109, 104–112, doi:10.1016/j.foodchem.2007.12.023.
[42]  Suh, H.; Whang, J.; Lee, H. A peptide from corn gluten hydrolysate that is inhibitory toward angiotensin I converting enzyme. Biotechnol. Lett. 1999, 21, 1055–1058, doi:10.1023/A:1005688627350.
[43]  Kim, J.; Whang, J.; Kim, K.; Koh, J.; Suh, H. Preparation of corn gluten hydrolysate with angiotensin I converting enzyme inhibitory activity and its solubility and moisture sorption. Process. Biochem. 2004, 39, 989–994.
[44]  Yang, Y.; Marczak, E.D.; Yokoo, M.; Usui, H.; Yoshikawa, M. Isolation and antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from spinach Rubisco. J. Agric. Food Chem. 2003, 51, 4897–4902, doi:10.1021/jf026186y.
[45]  Megías, C.; del Mar Yust, M.; Pedroche, J.; Lquari, H.; Girón-Calle, J.; Alaiz, M.; Millán, F.; Vioque, J. Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J. Agric. Food Chem. 2004, 52, 1928–1932.
[46]  Megías, C.; Pedroche, J.; Yust, M.M.; Alaiz, M.; Girón-Calle, J.; Millán, F.; Vioque, J. Purification of angiotensin converting enzyme inhibitory peptides from sunflower protein hydrolysates by reverse-phase chromatography following affinity purification. LWT Food Sci. Technol. 2009, 42, 228–232, doi:10.1016/j.lwt.2008.05.003.
[47]  Jamdar, S.; Rajalakshmi, V.; Pednekar, M.; Juan, F.; Yardi, V.; Sharma, A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem. 2010, 121, 178–184, doi:10.1016/j.foodchem.2009.12.027.
[48]  Yoshie-Stark, Y.; Wada, Y.; Schott, M.; W?sche, A. Functional and bioactive properties of rapeseed protein concentrates and sensory analysis of food application with rapeseed protein concentrates. LWT Food Sci. Technol. 2006, 39, 503–512, doi:10.1016/j.lwt.2005.03.006.
[49]  Hull, J.N.; Kannan, A.; Hettiarachchy, N.S. Antioxidant and antihypertensive activities of rice bran peptides. Discovery Student J. Dale Bumpers College Agric. Food Life Sci. 2011, 11, 52–57.
[50]  Chen, Z.Y.; Peng, C.; Jiao, R.; Wong, Y.M.; Yang, N.; Huang, Y. Anti-hypertensive nutraceuticals and functional foods. J. Agric. Food Chem. 2009, 57, 4485–4499, doi:10.1021/jf900803r.
[51]  Ringseis, R.; Matthes, B.; Lehmann, V.; Becker, K.; Sch?ps, R.; Ulbrich-Hofmann, R.; Eder, K. Peptides and hydrolysates from casein and soy protein modulate the release of vasoactive substances from human aortic endothelial cells. BBA Gen. Subj. 2005, 1721, 89–97, doi:10.1016/j.bbagen.2004.10.005.
[52]  World Health Organisation. 2011. Available online: http://www.who.int/mediacentre/factsheets/fs317/en/index.html (accessed on 2 July 2012).
[53]  Hilleboe, H.E. Some epidemiologic aspects of coronary artery disease. J. Chronic Dis. 1957, 6, 210–228, doi:10.1016/0021-9681(57)90003-6.
[54]  Terpstra, A.H.; Hermus, R.J.; West, C.E. The role of dietary protein in cholesterol metabolism. World Rev. Nutr. Diet. 1983, 42, 1–55.
[55]  Clifton, P.M. Protein and coronary heart disease: The role of different protein sources. Curr. Atheroscler. Rep. 2011, 13, 493–498, doi:10.1007/s11883-011-0208-x.
[56]  Manson, J.E.; Tosteson, H.; Ridker, P.M.; Satterfield, S.; Hebert, P.; O’Connor, G.T.; Buring, J.E.; Hennekens, C.H. The primary prevention of myocardial infarction. N. Engl. J. Med. 1992, 326, 1406–1416.
[57]  Ignatowsky, M.A. Influence de la nourriture animale sur l’organisme des lapins. Arch. Med. Exp. Anat. Pathol. 1908, 20, 1–20.
[58]  Velasquez, M.T.; Bhathena, S.J. Role of dietary soy protein in obesity. Int. J. Med. Sci. 2007, 4, 72–82, doi:10.7150/ijms.4.72.
[59]  Anderson, J.W.; Johnstone, B.M.; Cook-Newell, M.E. Meta-analysis of the effects of soy protein intake on serum lipids. N. Engl. J. Med. 1995, 333, 276–282.
[60]  Aoyama, T.; Fukui, K.; Takamatsu, K.; Hashimoto, Y.; Yamamoto, T. Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats and genetically obese mice (yellow KK). Nutrition 2000, 16, 349–354, doi:10.1016/S0899-9007(00)00230-6.
[61]  Nagaoka, S.; Miwa, K.; Eto, M.; Kuzuya, Y.; Hori, G.; Yamamoto, K. Soy protein peptic hydrolysate with bound phospholipids decreases micellar solubility and cholesterol absorption in rats and Caco-2 cells. J. Nutr. 1999, 129, 1725–1730.
[62]  Tsou, M.J.; Kao, F.J.; Tseng, C.K.; Chiang, W.D. Enhancing the anti-adipogenic activity of soy protein by limited hydrolysis with Flavourzyme and ultrafiltration. Food Chem. 2010, 122, 243–248, doi:10.1016/j.foodchem.2010.02.070.
[63]  Park, J.H.; Park, M.N.; Lee, I.S.; Kim, Y.K.; Kim, W.S.; Lee, Y.S. Effects of soy protein, its hydrolysate and peptide fraction on lipid metabolism and appetite-related hormones in rats. Korean J. Nutr. 2010, 43, 342–350, doi:10.4163/kjn.2010.43.4.342.
[64]  Megías, C.; Pedroche, J.; del Mar Yust, M.; Alaiz, M.; Girón-Calle, J.; Millán, F.; Vioque, J. Sunflower protein hydrolysates reduce cholesterol micellar solubility. Plant. Food Hum. Nutr. 2009, 64, 86–93, doi:10.1007/s11130-009-0108-1.
[65]  Revilla, E.; Maria, C.S.; Miramontes, E.; Bautista, J.; García-Martínez, A.; Cremades, O.; Cert, R.; Parrado, J. Nutraceutical composition, antioxidant activity and hypocholesterolemic effect of a water-soluble enzymatic extract from rice bran. Food Res. Int. 2009, 42, 387–393, doi:10.1016/j.foodres.2009.01.010.
[66]  Bergstr?m, J.; Hultman, E. Muscle glycogen synthesis after exercise: An enhancing factor localized to the muscle cells in man. Nature 1966, 210, 309–310, doi:10.1038/210309a0.
[67]  Bergstr?m, J.; Hultman, E. A study of the glycogen metabolism during exercise in man. Scand. J. Clin. Lab. Inv. 1967, 19, 218–228, doi:10.3109/00365516709090629.
[68]  Bergstr?m, J.; Hermansen, L.; Hultman, E.; Saltin, B. Diet, muscle glycogen and physical performance. Acta. Physiol. Scand. 1967, 71, 140–150, doi:10.1111/j.1748-1716.1967.tb03720.x.
[69]  Van Loon, L.J.C.; Saris, W.H.M.; Kruijshoop, M.; Wagenmakers, A.J.M. Maximizing postexercise muscle glycogen synthesis: Carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am. J. Clin. Nutr. 2000, 72, 106–111.
[70]  Koikawa, N.; Nakamura, A.; Ngaoka, I.; Aoki, K.; Sawaki, K.; Suzuki, Y. Delayed-onset muscle injury and its modification by wheat gluten hydrolysate. Nutrition 2009, 25, 493–498, doi:10.1016/j.nut.2008.11.001.
[71]  Tang, J.E.; Moore, D.R.; Kujbida, G.W.; Tarnopolsky, M.A.; Phillips, S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009, 107, 987–992, doi:10.1152/japplphysiol.00076.2009.
[72]  Calbet, J.A.L.; MacLean, D.A. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J. Nutr. 2002, 132, 2174–2182.
[73]  Di Pasquale, M.G. Amino Acids and Proteins for the Athlete: The Anabolic Edge; CRC Press: Boca Raton, FL, USA, 1997.
[74]  Van Loon, L.J.C.; Saris, W.H.M.; Verhagen, H.; Wagenmakers, A.J.M. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am. J. Clin. Nutr. 2000, 72, 96–105.
[75]  Bohé, J.; Low, A.; Wolfe, R.R.; Rennie, M.J. Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: A dose-response study. J. Physiol. 2003, 552, 315–324, doi:10.1113/jphysiol.2003.050674.
[76]  Berry, H.; Sutherland, B.; Hunt, M.; Fogelson, M.; O’Grady, D. Treatment of children with phenylketonuria using a phenylalanine-free protein hydrolysate (Albumaid XP). Am. J. Clin. Nutr. 1976, 29, 351–357.
[77]  Acosta, P.B.; Yannicelli, S.; Marriage, B.; Mantia, C.; Gaffield, B.; Porterfield, M.; Hunt, M.; McMaster, N.; Bernstein, L.; Parton, P. Nutrient intake and growth of infants with phenylketonuria undergoing therapy. J. Pediatr. Gastr. Nutr. 1998, 27, 287–291, doi:10.1097/00005176-199809000-00003.
[78]  Bickel, H.; Gerrard, J.; Hickmans, E.M. The influence of phenylalanine intake on the chemistry and behaviour of a phenylketonuria child. Acta. Paediatr. 1954, 43, 64–77, doi:10.1111/j.1651-2227.1954.tb04000.x.
[79]  Delvivo, F.M.; Vieira, C.R.; Biasutti, E.A.R.; Capobiango, M.; Silva, V.D.M.; Afonso, W.O.; Silvestre, M.P.C. Effect of adsorption medium, hydrolytic parameters and ultrafiltration on the phenylalanine removal from pancreatic whey hydrolysates. Am. J. Food Technol. 2006, 1, 94–104, doi:10.3923/ajft.2006.94.104.
[80]  Yamashita, M.; Arai, S.; Fujimaki, M. A low-phenylalanine high-tyrosine plastein as an acceptable dietetic food. Method of preparation by use of enzymatic protein hydrolysis and resynthesis. J. Food Sci. 1976, 41, 1029–1032, doi:10.1111/j.1365-2621.1976.tb14382.x.
[81]  Morgan, M.Y.; Marshall, A.; Milsom, J.P.; Sherlock, S. Plasma amino-acid patterns in liver disease. Gut 1982, 23, 362–370, doi:10.1136/gut.23.5.362.
[82]  Schenker, S.; Beer, W.H. Nutrients in the pathogenesis and treatment of hepatic encephalopathy. In Nutrition and the Origins of Disease; Halsted, C.H., Rucker, B.B., Eds.; Academic Press: London, UK, 1989; pp. 285–307.
[83]  Bautista, J.; Hernandez-Pinzon, I.; Alaiz, M.; Parrado, J.; Millan, F. Low molecular weight sunflower protein hydrolysate with low concentration in aromatic amino acids. J. Agric. Food Chem. 1996, 44, 967–971, doi:10.1021/jf940726c.
[84]  Bautista, J.; Corpas, R.; Cremades, O.; Hernández-Pinzón, I.; Ramos, R.; Villanueva, A.; Sánchez-Vioque, R.; Clemente, A.; Pedroche, J.; Vioque, J. Sunflower protein hydrolysates for dietary treatment of patients with liver failure. J. Am. Oil Chem. Soc. 2000, 77, 121–126.
[85]  Siemensma, A.; Babcock, J.; Wilcox, C.; Huttinga, H. Towards an understanding of how protein hydrolysates stimulate more efficient biosynthesis in cultured cells. In Protein Hydrolysates in Biotechnology; Pasupuleti, V.K., Demain, A.L., Eds.; Springer Dordrecht Heidelberg: New York, NY, USA, 2010; pp. 33–54.
[86]  Christians, N.; Liu, D.; Unrah, J.B. The use of protein hydrolysates for weed control. In Protein Hydrolysates in Biotechnology; Pasupuleti, V.K., Demain, A.L., Eds.; Springer Dordrecht Heidelberg: New York, NY, USA, 2010; pp. 127–133.
[87]  Zayas, J.F. Functionality of Proteins in Foods; Springer-Verlag: Berlin, Germany, 1997; p. 6.
[88]  Kinsella, J.E.; Melachouris, N. Functional properties of proteins in foods: A survey. Crit. Rev. Food Sci. 1976, 7, 219–280.
[89]  Vojdani, F. Solubility. In Methods of Testing Protein Functionality; Hall, G.M., Ed.; Blackie Academic & Professional: London, UK, 1996; pp. 11–60.
[90]  Adler-Nissen, J. Enzymatic Hydrolysis of Food Proteins; Elsevier Applied Science Publishers: London, UK, 1986; pp. 122–124.
[91]  Chobert, J.M.; Bertrand-Harb, C.; Nicolas, M.G. Solubility and emulsifying properties of caseins and whey proteins modified enzymically by trypsin. J. Agric. Food Chem. 1988, 36, 883–892.
[92]  Yalcin, E.; Celik, S. Solubility properties of barley flour, protein isolates and hydrolysates. Food Chem. 2007, 104, 1641–1647, doi:10.1016/j.foodchem.2007.03.029.
[93]  Claver, I.P.; Zhou, H. Enzymatic hydrolysis of defatted wheat germ by proteases and the effect on the functional properties of resulting protein hydrolysates. J. Food Biochem. 2005, 29, 13–26.
[94]  Vioque, J.; Sánchez-Vioque, R.; Clemente, A.; Pedroche, J.; Millán, F. Partially hydrolyzed rapeseed protein isolates with improved functional properties. J. Am. Oil Chem. Soc. 2000, 77, 447–450, doi:10.1007/s11746-000-0072-y.
[95]  Yoshie-Stark, Y.; Wada, Y.; W?sche, A. Chemical composition, functional properties, and bioactivities of rapeseed protein isolates. Food Chem. 2008, 107, 32–39, doi:10.1016/j.foodchem.2007.07.061.
[96]  Chiang, W.D.; Shih, C.J.; Chu, Y.H. Functional properties of soy protein hydrolysate produced from a continuous membrane reactor system. Food Chem. 1999, 65, 189–194, doi:10.1016/S0308-8146(98)00193-9.
[97]  Tsumura, K.; Saito, T.; Tsuge, K.; Ashida, H.; Kugimiya, W.; Inouye, K. Functional properties of soy protein hydrolysates obtained by selective proteolysis. LWT Food Sci. Technol. 2005, 38, 255–261.
[98]  Mahmoud, M.I. Physicochemical and functional properties of protein hydrolysates in nutritional products. J. Food Sci. 1994, 59, 89–95.
[99]  Chan, W.M.; Ma, C.Y. Acid modification of proteins from soymilk residue (okara). Food Res. Int. 1999, 32, 119–127, doi:10.1016/S0963-9969(99)00064-2.
[100]  Barca, A.; Ruiz-Salazar, R.; Jara-Marini, M. Enzymatic hydrolysis and synthesis of soy protein to improve its amino acid composition and functional properties. J. Food Sci. 2000, 65, 246–253.
[101]  Achouri, A.; Zhang, W.; Shiying, X. Enzymatic hydrolysis of soy protein isolate and effect of succinylation on the functional properties of resulting protein hydrolysates. Food Res. Int. 1999, 31, 617–623, doi:10.1016/S0963-9969(98)00104-5.
[102]  Kong, X.; Zhou, H.; Qian, H. Enzymatic preparation and functional properties of wheat gluten hydrolysates. Food Chem. 2007, 101, 615–620, doi:10.1016/j.foodchem.2006.01.057.
[103]  German, J.B.; O’Neill, T.E.; Kinsella, J.E. Film forming and foaming behavior of food proteins. J. Am. Oil Chem. Soc. 1985, 62, 1358–1366.
[104]  Zhang, H.J.; Zhang, H.; Wang, L.; Guo, X.N. Preparation and functional properties of rice bran proteins from heat-stabilized defatted rice bran. Food Res. Int. 2010, 47, 359–363, doi:10.1016/j.foodres.2011.08.014.
[105]  Yalc?n, E.; Celik, S.; Ibanoglu, E. Foaming properties of barley protein isolates and hydrolysates. Eur. Food Res. Technol. 2008, 226, 967–974.
[106]  Harper, W.; Boer, R.; Jelen, P.; Puhan, Z. Functional properties of whey protein concentrates and their relationship to ultrafiltration. In New Applications of Membrane Processes, International Dairy Federation Special Issue 9201; International Dairy Federation: Brussels, Belgium, 1992; pp. 77–108.
[107]  Babiker, E.E. Effect of transglutaminase treatment on the functional properties of native and chymotrypsin-digested soy protein. Food Chem. 2000, 70, 139–145, doi:10.1016/S0308-8146(99)00231-9.
[108]  Sakamoto, H.; Kumazawa, Y.; Toiguchi, S.; Seguro, K.; Soeda, T.; Motoki, M. Gel strength enhancement by addition of microbial transglutaminase during onshore surimi manufacture. J. Food Sci. 2006, 60, 300–304.
[109]  Fan, J.; Saito, M.; Yanyan, Z.; Szesze, T.; Wang, L.; Tatusmi, E.; Li, L. Gel-forming ability and radical-scavenging activity of soy protein hydrolysate treated with transglutaminase. J. Food Sci. 2005, 70, C87–C92.
[110]  Sanchez, A.C.; Burgos, J. Factors affecting the gelation properties of hydrolyzed sunflower proteins. J. Food Sci. 1997, 62, 284–288, doi:10.1111/j.1365-2621.1997.tb03986.x.
[111]  Léger, L.W.; Arntfield, S.D. Thermal gelation of the 12S canola globulin. J. Am. Oil Chem. Soc. 1993, 70, 853–861, doi:10.1007/BF02545343.
[112]  Uruakpa, F.O.; Arntfield, S. Emulsifying characteristics of commercial canola protein-hydrocolloid systems. Food Res. Int. 2005, 38, 659–672, doi:10.1016/j.foodres.2005.01.004.
[113]  Food and Drug Administration. Available online: http://www.fda.gov/Food/FoodIngredientsPackaging/GenerallyRecognizedasSafeGRAS/default.html (accessed on 17 August 2012).
[114]  Commission of the European Communities. Available online: http://ec.europa.eu/food/food/biotechnology/novelfood/index_en.html (accessed on 17 August 2012).
[115]  Halken, S.; Host, A.; Hansen, L.G.; ?sterballe, O. Safety of a new, ultra filtrated whey hydrolysate formula in children with cow milk allergy: A clinical investigation. Pediatr. Allergy Immun. 1993, 4, 53–59, doi:10.1111/j.1399-3038.1993.tb00067.x.
[116]  Szajewska, H.; Albrecht, P.; Stoinska, B.; Prochowska, A.; Gawecka, A.; Laskowska-Klita, T. Extensive and partial protein hydrolysate preterm formulas: The effect on growth rate, protein metabolism indices, and plasma amino acid concentrations. J. Pediatr. Gastr. Nutr. 2001, 32, 303–309, doi:10.1097/00005176-200103000-00013.
[117]  Decsi, T.; Veitl, V.; Szász, M.; Pinter, Z.; Mehes, K. Plasma amino acid concentrations in healthy, full-term infants fed hydrolysate infant formula. J. Pediatr. Gastr. Nutr. 1996, 22, 62–67, doi:10.1097/00005176-199601000-00010.
[118]  Lynch, B.; Simon, R.; van Otterdijk, F.; Emmen, H.; Giuseppin, M.; Kemme-Kroonsberg, C. Subchronic toxicity evaluation of potato protein isolates. Food Chem. Toxicol. 2012, 50, 373–384.
[119]  Mejia, L.A.; Korgaonkar, C.K.; Schweizer, M.; Chengelis, C.; Marit, G.; Ziemer, E.; Grabiel, R.; Empie, M. A 13-week sub-chronic dietary toxicity study of a cruciferin-rich canola protein isolate in rats. Food Chem. Toxicol. 2009, 47, 2645–2654, doi:10.1016/j.fct.2009.07.029.
[120]  Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides 2010, 31, 1949–1956, doi:10.1016/j.peptides.2010.06.020.
[121]  Moure, A.; Domínguez, H.; Parajó, J.C. Fractionation and enzymatic hydrolysis of soluble protein present in waste liquors from soy processing. J. Agric. Food Chem. 2005, 53, 7600–7608.
[122]  Hartmann, R.; Wal, J.M.; Bernard, H.; Pentzien, A.K. Cytotoxic and allergenic potential of bioactive proteins and peptides. Curr. Pharm. Design 2007, 13, 897–920, doi:10.2174/138161207780414232.

Full-Text

comments powered by Disqus