All Title Author
Keywords Abstract


Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes

DOI: 10.1186/1471-2148-9-266

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have identified in silico the full complement of the cystatin superfamily in more than 2100 prokaryotic and eukaryotic genomes. The analysis of numerous eukaryotic genomes has provided strong evidence for the emergence of this superfamily in the ancestor of eukaryotes. The progenitor of this superfamily was most probably intracellular and lacked a signal peptide and disulfide bridges, much like the extant Giardia cystatin. A primordial gene duplication produced two ancestral eukaryotic lineages, cystatins and stefins. While stefins remain encoded by a single or a small number of genes throughout the eukaryotes, the cystatins have undergone a more complex and dynamic evolution through numerous gene and domain duplications. In the cystatin superfamily we discovered twenty vertebrate-specific and three angiosperm-specific orthologous families, indicating that functional diversification has occurred only in multicellular eukaryotes. In vertebrate orthologous families, the prevailing trends were loss of the ancestral inhibitory activity and acquisition of novel functions in innate immunity. Bacterial cystatins and stefins may be emergency inhibitors that enable survival of bacteria in the host, defending them from the host's proteolytic activity.This study challenges the current view on the classification, origin and evolution of the cystatin superfamily and provides valuable insights into their functional diversification. The findings of this comprehensive study provide guides for future structural and evolutionary studies of the cystatin superfamily as well as of other protease inhibitors and proteases.The cystatin superfamily consists of a large group of cystatin domain-containing proteins, most of which are reversible and tight-binding inhibitors of the papain (C1) and legumain (C13) families of cysteine proteases [1-4]. On the basis of sequence similarity, the presence or lack of disulfide bonds, and physiological localization, this superfamily has been divided i

Full-Text

comments powered by Disqus