All Title Author
Keywords Abstract

The baboon (Papio anubis) extracranial carotid artery: An anatomical guide for endovascular experimentation

DOI: 10.1186/1471-2261-1-4

Full-Text   Cite this paper   Add to My Lib


We characterized the extracranial carotid system often male baboons (Papio anubis, range 15.1–28.4 kg) by early post-mortem dissection. Photographic documentation of vessel lengths, lumen diameters, and angles of origin were measured for each segment of the carotid bilaterally.The common carotid arteries averaged 94.7 ± 1.7 mm (left) and 87.1 ± 1.6 mm (right) in length. The average minimal common carotid lumen diameters were 3.0 ± 0.3 mm (left) and 2.9 ± 0.2 mm (right). Each animal had a common brachiocephalic artery arising from the aorta which bifurcated into the left common carotid artery and right braciocephalic artery after 21.5 ± 1.6 mm. The vascular anatomy was found to be consistent among animals despite a wide range of animal weights.The consistency in the Papio anubis extracranial carotid system may promote the use of this species in the preclinical investigation of neuro-interventional therapies.There has been a recent interest in developing aggressive interventional strategies for the treatment of a variety of neurological diseases including stroke, subarachnoid hemorrhage, and head trauma [1-4]. Successful translation of these therapies to the clinical arena, however, is critically dependent on the use of appropriate experimental models [5]. Non-human primate models of neurological diseases currently exist and have the advantage of most closely mimicking human physiology [6]. These models are particularly relevant to neuro-interventional research in that anatomical similarities permit routine vascular access and evaluation of devices designed on a clinically relevant scale.Conducting experimental primate endovascular studies, however, requires a comprehensive understanding of the carotid vascular system. Previous investigations of non-human primate vascular anatomy have focused primarily on the general morphology of the vessels and not on vessel angles, lengths, or lumen diameters which are necessary for guiding endovascular technology [7,8]. To answer


comments powered by Disqus