All Title Author
Keywords Abstract

Visualization of the intracavitary blood flow in systemic ventricles of Fontan patients by contrast echocardiography using particle image velocimetry

DOI: 10.1186/1476-7120-10-5

Keywords: Fontan patients, Vortex, Contrast echocardiography, Particle image velocimetry

Full-Text   Cite this paper   Add to My Lib


Twenty-three patients (8 Fontan and 15 normal patients) underwent echocardiography with intravenous contrast agent (Sonovue?) administration. Dedicated software was used to perform particle image velocimetry (PIV) and to visualize intracavitary flow in the systemic ventricles of the patients. Vortex parameters including vortex depth, length, width, and sphericity index were measured. Vortex pulsatility parameters including relative strength, vortex relative strength, and vortex pulsation correlation were also measured.The data from this study show that it is feasible to perform particle velocimetry in Fontan patients. Vortex length (VL) was significantly lower (0.51 ± 0.09 vs 0.65 ± 0.12, P = 0.010) and vortex width (VW) (0.32 ± 0.06 vs 0.27 ± 0.04, p = 0.014), vortex pulsation correlation (VPC) (0.26 ± 0.25 vs -0.22 ± 0.87, p = 0.05) were significantly higher in Fontan patients. Sphericity index (SI) (1.66 ± 0.48 vs 2.42 ± 0.62, p = 0.005), relative strength (RS) (0.77 ± 0.33 vs 1.90 ± 0.47, p = 0.0001), vortex relative strength (VRS) (0.18 ± 0.13 vs 0.43 ± 0.14, p = 0.0001) were significantly lower in the Fontan patients group.PIV using contrast echocardiography is feasible in Fontan patients. Fontan patients had aberrant flow patterns as compared to normal hearts in terms of position, shape and sphericity of the main vortices. The vortex from the Fontan group was consistently shorter, wider and rounder than in controls. Whether vortex characteristics are related with clinical outcome is subject to further investigation.Particle image velocimetry is a new technique of determining the velocity and the direction of fluid streams by analyzing the change in position of small particles that drift with the fluid. With the recent development of echocardiographic technology, it is now possible to apply this approach to contrast-enhanced echocardiographic imaging [1-3].The growing knowledge about the structure and function of the ventricle [4] was of high interest to us in


comments powered by Disqus