All Title Author
Keywords Abstract


Cop-like operon: Structure and organization in species of the Lactobacillale order

Keywords: cop operon , CopY binding site , copper homeostasis , Enterococcus hirae , Lactobacillale order

Full-Text   Cite this paper   Add to My Lib

Abstract:

Copper is an essential and toxic trace metal for bacteria and, therefore, must be tightly regulated in the cell. Enterococcus hirae is a broadly studied model for copper homeostasis. The intracellular copper levels in E. hirae are regulated by the cop operon, which is formed by four genes: copA and copB that encode ATPases for influx and efflux of copper, respectively; copZ that encodes a copper chaperone; and copY, a copper responsive repressor. Since the complete genome sequence for E. hirae is not available, it is possible that other genes may encode proteins involved in copper homeostasis. Here, we identified a cop-like operon in nine species of Lactobacillale order with a known genome sequence. All of them always encoded a CopY-like repressor and a copper ATPase. The alignment of the cop-like operon promoter region revealed two CopY binding sites, one of which was conserved in all strains, and the second was only present in species of Streptococcus genus and L. johnsonii. Additional proteins associated to copper metabolism, CutC and Cupredoxin, also were detected. This study allowed for the description of the structure and organization of the cop operon and discussion of a phylogenetic hypothesis based on the differences observed in this operon's organization and its regulation in Lactobacillale order.

Full-Text

comments powered by Disqus