All Title Author
Keywords Abstract


Using of the generalized special relativity (GSR) in estimating the neutrino masses to explain the conversion of electron neutrinos

DOI: 10.4236/ns.2011.34044, PP. 334-338

Keywords: Generalized, Neutrino Masses, Conversion, Phenomena

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work the Generalized Special Relativity (GSR) is utilized to estimate masses of some elementary particles such as, neutrinos. These results are found to be in conformity with experimental and theoretical data. The results obtained may explain some physical phenomena, such as, conversion of neutrinos from type to type when solar neutrino reaches the Earth.

References

[1]  Nadyozhin D. K (1978), The neutrino radiation for a hot neutron star formation and the envelope outburst problem. Astrophysics Space Sci 53. 131.
[2]  Mikheev S. P. and Smirnov A. Y. (1985) Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. Sov. J. Nucl. Phys 42. 913.
[3]  Kotake K., Sato K and Takahashi K. (2006) Explosion Mechanism, Neutrino Burst, and Gravitational Wave in Core Collapse Supernovae, Rept. Prog. Phys. 69 971 [arXiv: astro-ph/0509456].
[4]  Janka H. T. et al. (2007), Supernova explosions and the birth of neutron stars DOI: 10.1063/1.2900257. arXiv: 0712.3070 [astro-ph].
[5]  Colgate S. A. and White R. H. (1966) The Hydrodynamic Behavior of Supernovae Explosions, Astrophysics. J. 143. 626.
[6]  Jegerlehner B., et al. (1996) Neutrino Oscillations and the Supernova 1987A Signal, Phys. Rev. D 54. 1194.
[7]  Lunardini C and. Smirnov A. Y (2001) Neutrinos from SN1987A, Earth matter effects and the LMA solution of the solar neutrino problem, Phys. Rev. D 63. 073009.
[8]  Lunardini C. and Smirnov A. Y. (2004) Neutrinos from SN1987A: Flavor conversion and interpretation of results. Astropart. Phys. 21. 703
[9]  Aliu E. et al. [K2K Collaboration] (2005) Evidence for muon neutrino oscillation in an accelerator-based experiment. Phys. Rev. Lett. 94. 081802.
[10]  Esteban-Pretel A. et al. (2008) Mu-tau neutrino refraction and collective three-flavor transformations in supernovae, Phys. Rev. D 77 065024.
[11]  Abdurashitov J. N. et al. (2002). Measurements of the solar neutrino capture rate by the Russian – American gallium solar neutrino experiments during one half of the 22-year cycle of solar activity J. Exp. Theory. Phys. 95, 181-193.
[12]  Drell S. (2003)., personal letter to John Bahcall, January 29.
[13]  Bahcall J. N. et al. (2001). Solar models: current epoch and time dependences, neutrinos, and helioseismological properties, Astrophysical J.555, 990-1012.
[14]  Eguchi K. et al. (2003). First results from kamland: evidence for reactor antineutrino disappearance, Phys. Rev. Lett. 90, 021802.
[15]  Bondi H. (1990). Reviews of modern physics, 29, 423. (1957), V. L. Braginsky, et al., Physical Review D, 15, 2047. S. Chu.
[16]  Bonn J et al. 2002 Prog. Part. Nucl. Phys. 48 133.
[17]  Lobashev V M et al. 2002 Prog. Part. Nucl. Phys. 48 128.
[18]  WMAP Komatsu E et al. 2009 Astrophys. J. Suppl. 180 330.
[19]  KATRIN and Osipowicz A et al. 2001 arXiv: 0109 033.
[20]  Elliott S and Engel J 2004 J. Phys. G: Nucl. Part. Phys. 30 R183.
[21]  Hassan I. (1998). neutrino masses, M.Sc. thesis – Sudan University of Science and Technology , Khartoum.
[22]  Lobashev V M et al. 2002 Prog. Part. Nucl. Phys. 48 128
[23]  Hilo M. H. M. et al. (2011). Using of the generalized special relativity in estimating the proton (nucleon) mass to explain the mass defect. doi:10.4236/ns.2011.32020

Full-Text

comments powered by Disqus