All Title Author
Keywords Abstract


TILLING in the two-rowed barley cultivar 'Barke' reveals preferred sites of functional diversity in the gene HvHox1

DOI: 10.1186/1756-0500-2-258

Full-Text   Cite this paper   Add to My Lib

Abstract:

In barley, we generated a new TILLING (Targeting Local Lesions IN Genomes) resource comprising 10,279 M2 mutants in the two-rowed malting cultivar 'Barke,' which has been used in the generation of other genomic resources in barley (~150,000 ESTs, DH mapping population). The value of this new resource was tested using selected candidate genes. An average frequency of approximately one mutation per 0.5 Mb was determined by screening ten fragments of six different genes. The ethyl methanesulphonate (EMS)mutagenesis efficiency was studied by recording and relating the mutagenesis-dependent effects found in the three mutant generations (M1-M3). A detailed analysis was performed for the homeodomain-leucine-zipper (HD-ZIP) gene HvHox1. Thirty-one mutations were identified by screening a 1,270-bp fragment in 7,348 M2 lines. Three of the newly identified mutants exhibited either a six-rowed or an intermedium-spike phenotype, and one mutant displayed a significantly altered spikelet morphology compared to that of the 'Barke' wild type. Our results indicate a bias in the frequency of independent functional mutations at specific base pair (bp) positions within the gene HvHox1.A new TILLING population was developed as a resource for high-throughput gene discovery in an alternative barley germplasm. Pilot screening demonstrated a similar or even slightly higher mutation frequency when compared to previously published barley TILLING populations that should allow for the identification of diverse allelic variation. Partial phenotypic evaluation of the M2 and M3 generations has revealed the presence of a wide spectrum of morphological diversity that highlights the great potential of this resource for use in forward genetic screens. Altogether, our study shows the efficiency of screening and the applicability of the new TILLING population for genetic studies in the barley crop model system.Barley has a long history as a model plant in mutation research and breeding [1]. One year afte

Full-Text

comments powered by Disqus