All Title Author
Keywords Abstract


Aplicación del análisis de rango reescalado R/S para la predicción de genes en el genoma vegetal

Keywords: Genómica comparativa , predicción de genes , análisis R/S , coeficiente de Hurst , Arabidopsis thaliana , Oryza sativa , Mus musculus

Full-Text   Cite this paper   Add to My Lib

Abstract:

La predicción de genes es en la actualidad uno de los principales desafíos de la genómica. La predicción permite realizar experimentos con alta probabilidad de encontrar genes de interés y comparar regiones de ADN de importancia agronómica entre genomas; además, ayuda a restringir los espacios de búsqueda en las bases de datos. Un procedimiento estadístico con base en el análisis R/S y el coeficiente de Hurst fue desarrollado para caracterizar y predecir genes y los componentes estructurales de estos (exones e intrones) en los genomas eucariotas completos de Arabidopsis thaliana, Oriza sativa y Mus musculus. Algoritmos en lenguaje de programación Python fueron desarrollados para extraer, filtrar y modelar más del 80% de las secuencias de genes registradas para estos genomas en la base de datos del GeneBank del NCBI. El análisis R/S permitió demostrar que existe un orden estructural en la distribución de los nucleótidos que constituyen las secuencias en las que predominan los fenómenos de memoria o dependencia de largo alcance. La estructura de memoria varía según el tipo de secuencias y el genoma de la especie. Las secuencias de los genes y exones de los genomas vegetales analizados presentaron comportamiento persistente mientras que las de los intrones tuvieron un comportamiento antipersistente, en comparación, al genoma animal en el cual los tres tipos de secuencias presentaron comportamiento persistente. De acuerdo con los parámetros provenientes del análisis R/S, el patrón de distribución de las secuencias del genoma se repitió de manera estadísticamente similar en cada uno de los cromosomas que pertenecen a una especie, constituyéndose en evidencias fundamentales de invarianza por cambio de escala; es decir, cada cromosoma por sí solo es una réplica estadística a menor escala del genoma completo. Los parámetros constituyeron criterios compactos para derivar predictores (clasificadores) de secuencias que alcanzaron promedios de sensibilidad y especificidad mayor del 81% y 70%, respectivamente. Este procedimiento podría ser probado en otros genomas y utilizado como criterio para incrementar la eficiencia de la selección en los programas de mejoramiento genético vegetal.

Full-Text

comments powered by Disqus