All Title Author
Keywords Abstract

Finding flavor genes

DOI: 10.1186/gb-2000-1-2-reports0057

Full-Text   Cite this paper   Add to My Lib


Aharoni et al. randomly isolated 1,701 cDNA clones from a strawberry fruit cDNA library and 480 clones from petunia corolla (as control) and printed the PCR-amplified clones on chemically modified glass slides using a robotic device. They used these microarrays to monitor changes in gene expression at three fruit developmental stages (from green to red). Using a rigorous statistical analysis, the authors found that 401 clones were differentially expressed between all three stages, with 177 clones being upregulated between the green and red stages. Sequences of the latter group of genes revealed that more than 50% were related to primary and secondary metabolism. From the other sequences potentially involved in flavor formation, Aharoni et al. identified a novel gene (SAAT) for an alcohol acetyltransferase, an enzyme that catalyzes the final step in the synthesis of volatile esters. This gene shows 16-fold greater expression during the red stage than the green stage of fruit development. The authors expressed recombinant SAAT in Escherichia coli and confirmed that the enzyme has alcohol acetyltransferase activity. Analysis of a series of potential substrates suggests that SAAT is responsible for formation of the predominant esters found in ripe strawberries.Access to Arabidopsis cDNA microarrays is provided by the Arabidopsis Functional Genomics Consortium (AFGC). Links to information on plant microarrays can also be found via the Virtual library: plant-arrays.Large-scale cDNA microarrays are now used with model systems to investigate global patterns of gene expression at the level of the whole organism. The utility of microarrays that cover a restricted portion of the genome, like that described in this paper, will become increasingly recognized, however. This paper is a first example of the use of customized plant cDNA microarrays from a non-model system. It provides a good example of how a small selected array can be used to study a particular developmental proces


comments powered by Disqus