全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimating Net Primary Production of Turfgrass in an Urban-Suburban Landscape with QuickBird Imagery

DOI: 10.3390/rs4040849

Keywords: urban vegetation, modeling, carbon cycle, high resolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

Vegetation is a basic component of urban-suburban environments with significant area coverage. As a major vegetation type in US cities, urban turfgrass provides a range of important ecological services. This study examined the biological carbon fixation of turfgrass in a typical residential neighborhood by linking ground-based measurements, high resolution satellite remote sensing, and ecological modeling. The spatial distribution of turfgrass and its vegetative conditions were mapped with QuickBird satellite imagery. The significant amount of shadows existing in the imagery were detected and removed by taking advantage of the high radiometric resolution of the data. A remote sensing-driven production efficiency model was developed and parameterized with field biophysical measurements to estimate annual net primary production of turfgrass. The results indicated that turfgrass accounted for 38% of land cover in the study area. Turfgrass assimilated 0–1,301 g?C?m?2?yr?1 depending on vegetative conditions and management intensity. The average annual net primary production per unit turfgrass cover by golf course grass (1,100.5 g?C?m?2) was much higher than that by regular lawn grass (771.2 g?C?m?2). However, lawn grass contributed more to the total net primary production than golf course grass due to its larger area coverage, although with higher spatial variability.

References

[1]  UNPD (United Nations Population Division). World Urbanization Prospects: The 2007 Revision; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2008.
[2]  White, E.M.; Morzillo, A.T.; Aliga, R.J. Past and projected rural land conversion in the US at state, regional, and national levels. Landscape Urban Plan 2009, 89, 37–48, doi:10.1016/j.landurbplan.2008.09.004.
[3]  Johnson, M.P. Environmental impacts of urban sprawl: A survey of the literature and proposed research agenda. Environ. Plann. A 2001, 33, 717–735, doi:10.1068/a3327.
[4]  Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760, doi:10.1126/science.1150195. 18258902
[5]  Nowak, D.J.; Noble, M.H.; Sisinni, S.M.; Dwyer, J.F. Assessing the US urban forest resources. J. Forest 2001, 99, 37–42.
[6]  Milesi, C.; Running, S.W.; Elvidge, C.D.; Dietz, J.B.; Tuttle, B.T.; Nemani, R.R. Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ. Manage 2005, 36, 426–438, doi:10.1007/s00267-004-0316-2. 16086109
[7]  Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Ka?miercak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using greenspace infrastructure: A literature review. Landscape Urban Plan 2007, 81, 167–178, doi:10.1016/j.landurbplan.2007.02.001.
[8]  Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ 1999, 29, 293–301, doi:10.1016/S0921-8009(99)00013-0.
[9]  Spronken-Smith, R.A.; Oke, T.R.; Lowry, W.P. Advection and the surface energy balance across an irrigated urban park. Int. J. Climatol 2000, 20, 1033–1047, doi:10.1002/1097-0088(200007)20:9<1033::AID-JOC508>3.0.CO;2-U.
[10]  Escobedo, F.J.; Nowak, D.J. Spatial heterogeneity and air pollution removal by an urban forest. Landscape Urban Plan 2009, 90, 102–110, doi:10.1016/j.landurbplan.2008.10.021.
[11]  Pauleit, S.; Duhme, F. Assessing the environmental performance of landcover types for urban planning. Landscape Urban Plan 2000, 52, 1–20, doi:10.1016/S0169-2046(00)00109-2.
[12]  Gehrt, S.D.; Chelsvig, J.E. Species-specific patterns of bat activity in an urban landscape. Ecol. Appl 2004, 14, 625–635, doi:10.1890/03-5013.
[13]  Bondeau, A.; Smith, P.C.; Zaehle, S.; Schaphoff, S.; Lucht, W.; Cramer, W.; Gerten, D.; Lotze-Campen, H.; Muller, C.; Reichstein, M.; Smith, B. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol 2007, 13, 679–706, doi:10.1111/j.1365-2486.2006.01305.x.
[14]  Vuichard, N.; Ciais, P.; Viovy, N.; Calanca, P.; Soussana, J.-F. Estimating the greenhouse gas fluxes of European grasslands with a process-based model: 2. Simulations at the continental level. Global Biogeochem. Cy 2007, 21, doi:10.1029/2005GB002612..
[15]  Mckinley, D.C.; Ryan, M.G.; Birdsey, R.A.; Giardina, C.P.; Harmon, M.E.; Heath, L.S.; Houghton, R.A.; Jackson, R.B.; Morrison, J.F.; Murray, B.C.; Pataki, D.E.; Skog, K.E. A synthesis of current knowledge on forests and carbon storage in the United States. Ecol. Appl 2011, 21, 1902–1924, doi:10.1890/10-0697.1. 21939033
[16]  Potere, D.; Schneider, A. A critical look at representations of urban areas in global maps. GeoJournal 2007, 69, 55–80, doi:10.1007/s10708-007-9102-z.
[17]  Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut 2002, 116, 381–389, doi:10.1016/S0269-7491(01)00214-7. 11822716
[18]  Kaye, J.P.; Mcculley, R.L.; Burke, I.C. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Global Change Biol 2005, 11, 575–587, doi:10.1111/j.1365-2486.2005.00921.x.
[19]  Churkina, G. Modeling the carbon cycle of urban systems. Ecol. Model 2008, 216, 107–113, doi:10.1016/j.ecolmodel.2008.03.006.
[20]  Golubiewski, N.E. Urbanization increases grassland carbon pools: Effects of landscaping in Colorado’s Front Range. Ecol. Appl 2006, 16, 555–571, doi:10.1890/1051-0761(2006)016[0555:UIGCPE]2.0.CO;2. 16711044
[21]  Zhao, T.; Brown, D.G.; Bergen, K.M. Increasing gross primary production (GPP) in the urbanizing landscapes of southeastern Michigan. Photogramm. Eng. Remote Sensing 2007, 73, 1159–1168.
[22]  Imhoff, M.L.; Bounoua, L.; DeFries, R.; Lawrence, W.T.; Stutzer, D.; Tucker, C.J.; Ricketts, T. The consequences of urban land transformation on net primary productivity in the United States. Remote Sens. Environ 2004, 89, 434–443, doi:10.1016/j.rse.2003.10.015.
[23]  Jo, H.-K.; McPherson, E.G. Carbon storage and flux in urban residential greenspace. J. Environ. Manage 1995, 45, 109–133, doi:10.1006/jema.1995.0062.
[24]  Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Nilon, C.H.; Pouyat, R.V.; Zipperer, W.C.; Costanza, R. Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Ann. Rev. Ecol. Evol. S 2001, 32, 127–157, doi:10.1146/annurev.ecolsys.32.081501.114012.
[25]  Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol 2011, 48, 1125–1134, doi:10.1111/j.1365-2664.2011.02021.x.
[26]  Falk, J.H. Energetics of a suburban lawn ecosystem. Ecology 1976, 57, 141–150, doi:10.2307/1936405.
[27]  Falk, J.H. The primary productivity of lawns in a temperate environment. J. Appl. Ecol 1980, 17, 689–695, doi:10.2307/2402647.
[28]  Cadenasso, M.L.; Pickett, S.T.A.; Schwarz, K. Spatial heterogeneity in urban ecosystems: Reconceptualizing land cover and a framework for classification. Front. Ecol. Environ 2007, 5, 80–88, doi:10.1890/1540-9295(2007)5[80:SHIUER]2.0.CO;2.
[29]  Moskal, L.M.; Styers, D.M.; Halabisky, M. Monitoring urban tree cover using object-based image analysis and public domain remotely sensed data. Remote Sens 2011, 3, 2243–2262, doi:10.3390/rs3102243.
[30]  Dare, P.M. Shadow analysis in high-resolution satellite imagery of urban areas. Photogramm. Eng. Remote Sensing 2005, 71, 169–177.
[31]  Veroustraete, F.; Sabbe, H.; Eerens, H. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sens. Environ 2002, 83, 376–399, doi:10.1016/S0034-4257(02)00043-3.
[32]  Seaquist, J.W.; Olsson, L.; Ard?, J. A remote sensing-based primary production model for grassland biomes. Ecol. Model 2003, 169, 131–155, doi:10.1016/S0304-3800(03)00267-9.
[33]  Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L.; Monson, R.; et al. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. J. Geophys. Res 2006, 111, doi:10.1029/2006JG000162..
[34]  Zhao, M.; Running, S.W. Remote Sensing of Terrestrial Primary Production and Carbon Cycle. In Advances in Land Remote Sensing: System, Modeling, Inversion and Application, 1st ed; Liang, S., Ed.; Springer: New York, NY, USA, 2008; pp. 423–444.
[35]  McCallum, I.; Wagner, W.; Schmullius, C.; Shvidenko, A.; Obersteiner, M.; Fritz, S.; Nilsson, S. Satellite-based terrestrial production efficiency modeling. Carbon Balance Manage 2009, 4, doi:10.1186/1750-0680-4-8..
[36]  Wu, J.; Wang, D.; Bauer, M.E. Image-based atmospheric correction of QuickBird imagery of Minnesota cropland. Remote Sens. Environ 2005, 99, 315–325, doi:10.1016/j.rse.2005.09.006.
[37]  Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis, 1st ed ed.; Wiley: New York, NY, USA, 1973.
[38]  Robson, M.J.; Parsons, A.J. Nitrogen deficiency in small closed communities of S24 ryegrass. I. photosynthesis, respiration, dry matter production and partition. Ann. Bot.-London 1978, 42, 1185–1197.
[39]  Bremer, D.J.; Ham, J.M. Measurement and partitioning of in situ CO2 fluxes in turfgrasses using a pressurized chamber. Agron. J 2005, 97, 627–632, doi:10.2134/agronj2005.0627.
[40]  Wu, J.; Wang, D.; Bauer, M.E. Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies. Field Crop. Res 2007, 102, 33–42, doi:10.1016/j.fcr.2007.01.003.
[41]  Asrar, G.E.; Fuchs, M.; Kanemasu, E.T.; Hatfield, J.L. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron. J 1984, 76, 300–306, doi:10.2134/agronj1984.00021962007600020029x.
[42]  Myneni, R.B.; Williams, D.L. On the relationship between FAPAR and NDVI. Remote Sens. Environ 1994, 49, 200–211, doi:10.1016/0034-4257(94)90016-7.
[43]  As-syakur, A.R.; Osawa, T.; Adnyana, I.W.S. Medium spatial resolution satellite imagery to estimate gross primary production in an urban area. Remote Sens 2010, 2, 1496–1507, doi:10.3390/rs2061496.
[44]  Tilman, D.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T.; Lehman, C. Diversity and productivity in a long-term grassland experiment. Science 2001, 294, 943–845.
[45]  Dyson, K.E.; Mobbs, D.C.; Milne, R. Annual Inventory Estimates for the UK (WP 1.1). In Inventory and Projections of UK Emissions by Sources and Removals by Sinks due to Land Use, Land Use Change and Forestry; Dyson, K.E., Ed.; Department for the Environment, Food and Rural Affairs: London, UK, 2009; pp. 13–49.
[46]  Pouyat, R.V.; Yesilonis, I.D.; Nowak, D.J. Carbon storage by urban soils in the United States. J. Environ. Qual 2006, 35, 1566–1575, doi:10.2134/jeq2005.0215. 16825477
[47]  Townsend-Small, A.; Czimczik, C.I. Carbon sequestration and greenhouse gas emissions in urban turf. Geophys. Res. Lett 2010, 37, doi:10.1029/2009GL041675..
[48]  Qian, Y.; Follett, R.F. Assessing soil carbon sequestration in turfgrass systems using long-term soil testing data. Agron. J 2002, 94, 930–935, doi:10.2134/agronj2002.0930.
[49]  Pataki, D.E.; Alig, R.J.; Fung, A.S.; Golubiewski, N.E.; Kennedy, C.A.; Mcpherson, E.G.; Nowak, D.J.; Pouyat, R.V.; Romero Lankao, P. Urban ecosystems and the North American carbon cycle. Global Change Biol 2006, 12, 2092–2102, doi:10.1111/j.1365-2486.2006.01242.x.
[50]  Hiller, R.V.; McFadden, J.P.; Kljun, N. Interpreting CO2 fluxes over a suburban lawn: The influence of traffic emissions. Bound.-Lay. Meteorol 2011, 138, 215–230, doi:10.1007/s10546-010-9558-0.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133