All Title Author
Keywords Abstract


The Effect of Different Movement Exercises on Cognitive and Motor Abilities

DOI: 10.4236/ape.2012.24030, PP. 172-178

Keywords: Motor Learning, Sensorimotor Adaptation, Cognition, Brain Gym®

Full-Text   Cite this paper   Add to My Lib

Abstract:

The influence of physical activity on motor and cognitive performance has been approved in several studies. However, it is still unclear which functions are affected, and why. It also remains unknown what type of physical training is best suitable. The present study focuses on special movement aspects based on the Brain Gym? program. Four groups of subjects (n = 64) participated in two experiments with pre-post intervention design. In experiment 1 two groups of subjects were exposed to a sensorimotor adaptation study design by executing center out pointing movements under distorted visual feedback conditions with their dominant and non-dominant arm to test for intermanual transfer (IMT) as pre- and posttest. The intervention in both groups consisted of specified movement exercises with the right and left extremities: participants of Experimental group executed movements crossing the body midline and participants of Control group movements without crossing the body midline. Results showed a decreased retention of adaptation but larger IMT for Experimental group during posttest. We conclude that movements crossing the body midline impede retention but enhance IMT of sensorimotor adaptation. A potential relationship to an improvement of communication between the cerebral hemispheres evoked by the movement exercises crossing the body midline is rather speculative. In experiment 2 two groups were exposed to the d2-test measuring concentration and attention and a dice-test testing for visual-spatial abilities as pre- and posttest. The interventions were similar to experiment 1. Results yielded no differences between groups such that different effects of both interventions could not have been shown.

References

[1]  Abeele, S., & Bock, O. (2001). Mechanisms for sensorimotor adaptation to rotated visual input. Experimental Brain Research, 139, 248- 253. doi:10.1007/s002210100768
[2]  Andres, F. G., Mima, T., Schulman, A. E., Dichgans, J., Hallett, M., & Gerloff, C. (1999). Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain, 122, 855-870. doi:10.1093/brain/122.5.855
[3]  Bhattacharya, J., Petsche, H., Feldmann, U., & Rescher, B. (2001). Eeg gamma-band phase synchronization between posterior and frontal cortex during mental rotation in humans. Neuroscience Letters, 311, 29-32. doi:10.1016/S0304-3940(01)02133-4
[4]  Blumenthal, J. A., Emery, C. F., Madden, D. J., Schniebolk, S., Walsh-Riddle, M., George, L. K., et al. (1991). Long-term effects of exercise on psychological functioning in older men and women. Journals of Gerontology, 46, 352-361.
[5]  Bock, O., Schneider, S., & Bloomberg, J. (2001). Conditions for interference versus facilitation during sequential sensorimotor adaptation. Experimental Brain Research, 138, 359-365. doi:10.1007/s002210100704
[6]  Brickenkamp, K. (2002). Test d2 aufmerksamkeits-belastungs-test, manual (The d2 test of attention). G?ttingen-Bern-Toronto-Seattle: Hogrefe, Ltd.
[7]  Budde, H., Voelcker-Rehage, C., Pietrabyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute Coordinative Exercise Improves Attentional Performance in Adolescents. Neuroscience Letters, 441, 219-223. doi:10.1016/j.neulet.2008.06.024
[8]  Colcombe, S., & Kramer, A. F. (2003). Fitness Effects on the Cognitive Function of Older Adults: A Meta-Analytic Study. Psychological Science, 14, 125-130. doi:10.1111/1467-9280.t01-1-01430
[9]  Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., et al. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the USA, 101, 3316-3321. doi:10.1073/pnas.0400266101
[10]  Hill, R. D., Storandt, M., & Malley, M. (1993). The impact of long-term exercise training on psychological function in older adults. Journals of Gerontology, 48, 12-17.
[11]  Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58-65. doi:10.1038/nrn2298
[12]  Hillman, C. H., Pontifex, M. B., Raine, L. B., Castelli, D. M., Hall, E. E., & Kramer, A. F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159, 1044-1054. doi:10.1016/j.neuroscience.2009.01.057
[13]  Hillman, C. H., Weiss, E. P., Hagberg, J. M., & Hatfield, B. D. (2002). The relationship of age and cardiovascular fitness to cognitive and motor processes. Psychophysiology, 39, 303-312. doi:10.1017/S0048577201393058
[14]  Kramer, A. F., & Erickson, K. I. (2007). Capitalizing on cortical plasticity: Influence of Physical activity on cognition and brain function. Trends in Cognitive Sciences, 11, 342-348. doi:10.1016/j.tics.2007.06.009
[15]  Liepmann, D., Beauducel, A., Brocke, B., Amthauer, R. (2007). Intelligenz-struktur-test 2000R, manual (intelligence-structure-test). G?ttingen-Bern-Toronto-Seattle: Hogrefe, Ltd.
[16]  McGaugh, J. L. (2000). Memory—A century of consolidation. Science, 287, 248-251. doi:10.1126/science.287.5451.248
[17]  Mierau, A., Schneider, S., Abel, T., Askew, C., Werner, S., & Struder, H. K. (2009). Improved Sensorimotor Adaptation after Exhaustive Exercise Is Accompanied by Altered Brain Activity. Physiology & Behavior, 96, 115-121. doi:10.1016/j.physbeh.2008.09.002
[18]  Planinsec, J. (2002). Relations between the motor and cognitive dimensions of preschool girls and boys. Percept Mot Skills, 94, 415-423. doi:10.2466/pms.2002.94.2.415
[19]  Richards, D. K. (1968). A two-factor theory of the warm-up effect in jumping performance. Research Quarterly, 39, 668-673.
[20]  Sainburg, R. L. (2002). Evidence for a dynamic-dominance hypothesis of handedness. Experimental Brain Research, 142, 241-258. doi:10.1007/s00221-001-0913-8
[21]  Sainburg, R. L., & Kalakanis, D. (2000). Differences in control of limb dynamics during dominant and nondominant arm reaching. Journal of Neurophysiology, 83, 2661-2675.
[22]  Sainburg, R. L., & Wang, J. (2002). Interlimb transfer of visuomotor rotations: Independence of direction and final position information. Experimental Brain Research, 145, 437-447. doi:10.1007/s00221-002-1140-7
[23]  Sauseng, P., Klimesch, W., Schabus, M., & Doppelmayr, M. (2005). Fronto-parietal eeg coherence in theta and upper alpha reflect Central executive functions of working memory. International Journal of Psychophysiology, 57, 97-103. doi:10.1016/j.ijpsycho.2005.03.018
[24]  Serrien, D. J. (2009). Bimanual information processing and the impact of conflict during mirror drawing. Behavioural Brain Research, 205, 391-395. doi:10.1016/j.bbr.2009.07.015
[25]  Serrien, D. J., & Brown, P. (2002). The functional role of interhemispheric synchronization in the control of bimanual timing tasks. Experimental Brain Research, 147, 268-272. doi:10.1007/s00221-002-1253-z
[26]  Shadmehr, R., & Holcomb, H. H. (1997). Neural Correlates of Motor Memory Consolidation. Science, 277, 821-825. doi:10.1126/science.277.5327.821
[27]  Shibata, T., Shimoyama, I., Ito, T., Abla, D., Iwasa, H., Koseki, K., et al. (1997). The time course of interhemispheric eeg coherence during a go/no-go task in humans. Neuroscience Letters, 233, 117-120. doi:10.1016/S0304-3940(97)00652-6
[28]  Shibata, T., Shimoyama, I., Ito, T., Abla, D., Iwasa, H., Koseki, K., et al. (1998). The synchronization between brain areas under motor inhibition process in humans estimated by event-related eeg coherence. Neuroscience Research, 31, 265-271. doi:10.1016/S0168-0102(98)00046-7
[29]  Uhrich, T. A., & Swalm, R. L. (2007). A pilot study of a possible effect from a motor task on reading performance. Perceptual & Motor Skills Percept Mot Skills, 104, 1035-1041. doi:10.2466/pms.104.3.1035-1041
[30]  Voelcker-Rehage, C., Godde, B., & Staudinger, U. M. (2010). Physical and motor fitness are both related to cognition in old age. European Journal of Neuroscience, 31, 167-176. doi:10.1111/j.1460-9568.2009.07014.x
[31]  Voelcker-Rehage, C., Godde, B., & Staudinger, U. M. (2011). Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Frontiers in Human Neuroscience, 5, 26. doi:10.3389/fnhum.2011.00026

Full-Text

comments powered by Disqus