全部 标题 作者
关键词 摘要

PLOS ONE  2012 

Sequence Heterogeneity in NS5A of Hepatitis C Virus Genotypes 2a and 2b and Clinical Outcome of Pegylated-Interferon/Ribavirin Therapy

DOI: 10.1371/journal.pone.0030513

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pegylated-interferon plus ribavirin (PEG-IFN/RBV) therapy is a current standard treatment for chronic hepatitis C. We previously reported that the viral sequence heterogeneity of part of NS5A, referred to as the IFN/RBV resistance-determining region (IRRDR), and a mutation at position 70 of the core protein of hepatitis C virus genotype 1b (HCV-1b) are significantly correlated with the outcome of PEG-IFN/RBV treatment. Here, we aimed to investigate the impact of viral genetic variations within the NS5A and core regions of other genotypes, HCV-2a and HCV-2b, on PEG-IFN/RBV treatment outcome. Pretreatment sequences of NS5A and core regions were analyzed in 112 patients infected with HCV-2a or HCV-2b, who were treated with PEG-IFN/RBV for 24 weeks and followed up for another 24 weeks. The results demonstrated that HCV-2a isolates with 4 or more mutations in IRRDR (IRRDR[2a]≥4) was significantly associated with rapid virological response at week 4 (RVR) and sustained virological response (SVR). Also, another region of NS5A that corresponds to part of the IFN sensitivity-determining region (ISDR) plus its carboxy-flanking region, which we referred to as ISDR/+C[2a], was significantly associated with SVR in patients infected with HCV-2a. Multivariate analysis revealed that IRRDR[2a]≥4 was the only independent predictive factor for SVR. As for HCV-2b infection, an N-terminal half of IRRDR having two or more mutations (IRRDR[2b]/N≥2) was significantly associated with RVR, but not with SVR. No significant correlation was observed between core protein polymorphism and PEG-IFN/RBV treatment outcome in HCV-2a or HCV-2b infection. Conclusion: The present results suggest that sequence heterogeneity of NS5A of HCV-2a (IRRDR[2a]≥4 and ISDR/+C[2a]), and that of HCV-2b (IRRDR[2b]/N≥2) to a lesser extent, is involved in determining the viral sensitivity to PEG-IFN/RBV therapy.

References

[1]  Micallef JM, Kaldor JM, Dore GJ (2006) Spontaneous viral clearance following acute hepatitis C infection: a systematic review of longitudinal studies. J Viral Hepat 13: 34–41.
[2]  Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, et al. (2002) Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347: 975–982.
[3]  Sherman KE, Flamm SL, Afdhal NH, Nelson DR, Sulkowski MS, et al. (2011) Response-guided telaprevir combination treatment for hepatitis C virus infection. N Engl J Med 365: 1014–1024.
[4]  Limaye AR, Draganov PV, Cabrera R (2011) Boceprevir for chronic HCV genotype 1 infection. N Engl J Med 365: 176; author reply 177–178.
[5]  Enomoto N, Takada A, Nakao T, Date T (1990) There are two major types of hepatitis C virus in Japan. Biochem Biophys Res Commun 170: 1021–1025.
[6]  Sarasin-Filipowicz M (2009) Interferon therapy of hepatitis C: molecular insights into success and failure. Swiss Med Wkly 140: 3–11.
[7]  Enomoto N, Sakuma I, Asahina Y, Kurosaki M, Murakami T, et al. (1996) Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N Engl J Med 334: 77–81.
[8]  Murakami T, Enomoto N, Kurosaki M, Izumi N, Marumo F, et al. (1999) Mutations in nonstructural protein 5A gene and response to interferon in hepatitis C virus genotype 2 infection. Hepatology 30: 1045–1053.
[9]  Akuta N, Suzuki F, Tsubota A, Suzuki Y, Hosaka T, et al. (2003) Association of amino acid substitution pattern in nonstructural protein 5A of hepatitis C virus genotype2a low viral load and response to interferon monotherapy. J Med Virol 69: 376–383.
[10]  Kadokura M, Maekawa S, Sueki R, Miura M, Komase K, et al. (2011) Analysis of the complete open reading frame of hepatitis C virus in genotype 2a infection reveals critical sites influencing the response to peginterferon and ribavirin therapy. Hepatol Int 5: 789–799.
[11]  El-Shamy A, Nagano-Fujii M, Sasase N, Imoto S, Kim SR, et al. (2008) Sequence variation in hepatitis C virus nonstructural protein 5A predicts clinical outcome of pegylated interferon/ribavirin combination therapy. Hepatology 48: 38–47.
[12]  El-Shamy A, Kim SR, Ide YH, Sasase N, Imoto S, et al. (2012) Polymorphisms of hepatitis C virus non-structural protein 5A and core proteins and clinical outcome of pegylated-interferon/ribavirin combination therapy. Intervirology 55: 1–11.
[13]  Akuta N, Suzuki F, Kawamura Y, Yatsuji H, Sezaki H, et al. (2007) Predictive factors of early and sustained responses to peginterferon plus ribavirin combination therapy in Japanese patients infected with hepatitis C virus genotype 1b: Amino acid substitutions in the core region and low-density lipoprotein cholesterol levels. J Hepatol 46: 403–410.
[14]  Okamoto H, Sugiyama Y, Okada S, Kurai K, Akahane Y, et al. (1992) Typing hepatitis C virus by polymerase chain reaction with type-specific primers: application to clinical surveys and tracing infectious sources. J Gen Virol 73(Pt 3): 673–679.
[15]  El-Shamy A, Sasayama M, Nagano-Fujii M, Sasase N, Imoto S, et al. (2007) Prediction of efficient virological response to pegylated interferon/ribavirin combination therapy by NS5A sequences of hepatitis C virus and anti-NS5A antibodies in pre-treatment sera. Microbiol Immunol 51: 471–482.
[16]  Lusida MI, Nagano-Fujii M, Nidom CA, Soetjipto , Handajani R, et al. (2001) Correlation between mutations in the interferon sensitivity-determining region of NS5A protein and viral load of hepatitis C virus subtypes 1b, 1c, and 2a. J Clin Microbiol 39: 3858–3864.
[17]  Akuta N, Suzuki F, Hirakawa M, Kawamura Y, Yatsuji H, et al. (2009) Association of amino acid substitution pattern in core protein of hepatitis C virus genotype 2a high viral load and virological response to interferon-ribavirin combination therapy. Intervirology 52: 301–309.
[18]  Okamoto H, Okada S, Sugiyama Y, Kurai K, Iizuka H, et al. (1991) Nucleotide sequence of the genomic RNA of hepatitis C virus isolated from a human carrier: comparison with reported isolates for conserved and divergent regions. J Gen Virol 72(Pt 11): 2697–2704.
[19]  Okamoto H, Kurai K, Okada S, Yamamoto K, Lizuka H, et al. (1992) Full-length sequence of a hepatitis C virus genome having poor homology to reported isolates: comparative study of four distinct genotypes. Virology 188: 331–341.
[20]  Kau A, Vermehren J, Sarrazin C (2008) Treatment predictors of a sustained virologic response in hepatitis B and C. J Hepatol 49: 634–651.
[21]  Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, et al. (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461: 399–401.
[22]  Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, et al. (2009) Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 41: 1105–1109.
[23]  Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, et al. (2009) IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 41: 1100–1104.
[24]  Duverlie G, Khorsi H, Castelain S, Jaillon O, Izopet J, et al. (1998) Sequence analysis of the NS5A protein of European hepatitis C virus 1b isolates and relation to interferon sensitivity. J Gen Virol 79: 1373–1381.
[25]  Squadrito G, Orlando ME, Cacciola I, Rumi MG, Artini M, et al. (1999) Long-term response to interferon alpha is unrelated to “interferon sensitivity determining region” variability in patients with chronic hepatitis C virus-1b infection. J Hepatol 30: 1023–1027.
[26]  Sarrazin C, Berg T, Lee JH, Ruster B, Kronenberger B, et al. (2000) Mutations in the protein kinase-binding domain of the NS5A protein in patients infected with hepatitis C virus type 1a are associated with treatment response. J Infect Dis 181: 432–441.
[27]  Chung RT, Monto A, Dienstag JL, Kaplan LM (1999) Mutations in the NS5A region do not predict interferon-responsiveness in American patients infected with genotype 1b hepatitis C virus. J Med Virol 58: 353–358.
[28]  Zeuzem S, Lee JH, Roth WK (1997) Mutations in the nonstructural 5A gene of European hepatitis C virus isolates and response to interferon alfa. Hepatology 25: 740–744.
[29]  Pascu M, Martus P, Hohne M, Wiedenmann B, Hopf U, et al. (2004) Sustained virological response in hepatitis C virus type 1b infected patients is predicted by the number of mutations within the NS5A-ISDR: a meta-analysis focused on geographical differences. Gut 53: 1345–1351.
[30]  Alestig E, Arnholm B, Eilard A, Lagging M, Nilsson S, et al. (2011) Core mutations, IL28B polymorphisms and response to peginterferon/ribavirin treatment in Swedish patients with hepatitis C virus genotype 1 infection. BMC Infect Dis 11: 124.
[31]  Donlin MJ, Cannon NA, Aurora R, Li J, Wahed AS, et al. (2010) Contribution of genome-wide HCV genetic differences to outcome of interferon-based therapy in Caucasian American and African American patients. PLoS One 5: e9032.
[32]  Tsai YH, Kuang WF, Lu TY, Kao JH, Lai MY, et al. (2008) The non-structural 5A protein of hepatitis C virus exhibits genotypic differences in interferon antagonism. J Hepatol 85: 2485–502.
[33]  Macdonald A, Harris M (2004) Hepatitis C virus NS5A: tales of a promiscuous protein. J Gen Virol 85: 2485–2502.
[34]  Hughes M, Gretton S, Shelton H, Brown DD, McCormick CJ, et al. (2009) A conserved proline between domains II and III of hepatitis C virus NS5A influences both RNA replication and virus assembly. J Virol 83: 10788–10796.
[35]  Tellinghuisen TL, Foss KL, Treadaway J (2008) Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS Pathog 4: e1000032.
[36]  Moradpour D, Evans MJ, Gosert R, Yuan Z, Blum HE, et al. (2004) Insertion of green fluorescent protein into nonstructural protein 5A allows direct visualization of functional hepatitis C virus replication complexes. J Virol 78: 7400–7409.
[37]  Yuan HJ, Jain M, Snow KK, Gale M Jr, Lee WM (2009) Evolution of hepatitis C virus NS5A region in breakthrough patients during pegylated interferon and ribavirin therapy. J Viral Hepat 17: 208–216.
[38]  Sakamoto N, Nakagawa M, Tanaka Y, Sekine-Osajima Y, Ueyama M, et al. (2011) Association of IL28B variants with response to pegylated-interferon alpha plus ribavirin combination therapy reveals intersubgenotypic differences between genotypes 2a and 2b. J Med Virol 83: 871–878.

Full-Text

comments powered by Disqus