All Title Author
Keywords Abstract


The Pleiotropic CymR Regulator of Staphylococcus aureus Plays an Important Role in Virulence and Stress Response

DOI: 10.1371/journal.ppat.1000894

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have characterized a novel pleiotropic role for CymR, the master regulator of cysteine metabolism. We show here that CymR plays an important role both in stress response and virulence of Staphylococcus aureus. Genes involved in detoxification processes, including oxidative stress response and metal ion homeostasis, were differentially expressed in a ΔcymR mutant. Deletion of cymR resulted in increased sensitivity to hydrogen peroxide-, disulfide-, tellurite- and copper-induced stresses. Estimation of metabolite pools suggests that this heightened sensitivity could be the result of profound metabolic changes in the ΔcymR mutant, with an increase in the intracellular cysteine pool and hydrogen sulfide formation. Since resistance to oxidative stress within the host organism is important for pathogen survival, we investigated the role of CymR during the infectious process. Our results indicate that the deletion of cymR promotes survival of S. aureus inside macrophages, whereas virulence of the ΔcymR mutant is highly impaired in mice. These data indicate that CymR plays a major role in virulence and adaptation of S. aureus for survival within the host.

References

[1]  Ayala-Castro C, Saini A, Outten FW (2008) Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev 72: 110–125.
[2]  Ito K, Inaba K (2008) The disulfide bond formation (Dsb) system. Curr Opin Struct Biol 18: 450–458.
[3]  Bogdan JA, Nazario-Larrieu J, Sarwar J, Alexander P, Blake MS (2001) Bordetella pertussis autoregulates pertussis toxin production through the metabolism of cysteine. Infect Immun 69: 6823–6830.
[4]  Gooder H, Gehring LB (1954) Inhibition by cystine of lecithinase (alpha-toxin) production in Clostridium welchii (perfringens) BP6K. Nature 174: 1054–1055.
[5]  Karlsson S, Lindberg A, Norin E, Burman LG, Akerlund T (2000) Toxins, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile. Infect Immun 68: 5881–5888.
[6]  Bhave DP, Muse WB 3rd, Carroll KS (2007) Drug targets in mycobacterial sulfur metabolism. Infect Disord Drug Targets 7: 140–158.
[7]  Grifantini R, Bartolini E, Muzzi A, Draghi M, Frigimelica E, et al. (2002) Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nat Biotechnol 20: 914–921.
[8]  Ejim LJ, D'Costa VM, Elowe NH, Loredo-Osti JC, Malo D, et al. (2004) Cystathionine beta-lyase is important for virulence of Salmonella enterica serovar Typhimurium. Infect Immun 72: 3310–3314.
[9]  Lestrate P, Delrue RM, Danese I, Didembourg C, Taminiau B, et al. (2000) Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Mol Microbiol 38: 543–551.
[10]  Masip L, Veeravalli K, Georgiou G (2006) The many faces of glutathione in bacteria. Antioxid Redox Signal 8: 753–762.
[11]  Zeller T, Klug G (2006) Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 93: 259–266.
[12]  delCardayre SB, Stock KP, Newton GL, Fahey RC, Davies JE (1998) Coenzyme A disulfide reductase, the primary low molecular weight disulfide reductase from Staphylococcus aureus. Purification and characterization of the native enzyme. J Biol Chem 273: 5744–5751.
[13]  Newton GL, Arnold K, Price MS, Sherrill C, Delcardayre SB, et al. (1996) Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178: 1990–1995.
[14]  Newton GL, Rawat M, La Clair JJ, Jothivasan VK, Budiarto T, et al. (2009) Bacillithiol is an antioxidant thiol produced in Bacilli. Nat Chem Biol 5: 625–627.
[15]  Even S, Burguière P, Auger S, Soutourina O, Danchin A, et al. (2006) Global control of cysteine metabolism by CymR in Bacillus subtilis. J Bacteriol 188: 2184–2197.
[16]  Hochgrafe F, Mostertz J, Pother DC, Becher D, Helmann JD, et al. (2007) S-cysteinylation is a general mechanism for thiol protection of Bacillus subtilis proteins after oxidative stress. J Biol Chem 282: 25981–25985.
[17]  Hung J, Cooper D, Turner MS, Walsh T, Giffard PM (2003) Cystine uptake prevents production of hydrogen peroxide by Lactobacillus fermentum BR11. FEMS Microbiol Lett 227: 93–99.
[18]  Lithgow JK, Hayhurst EJ, Cohen G, Aharonowitz Y, Foster SJ (2004) Role of a cysteine synthase in Staphylococcus aureus. J Bacteriol 186: 1579–1590.
[19]  Lo R, Turner MS, Barry DG, Sreekumar R, Walsh TP, et al. (2009) Cystathionine gamma-lyase is a component of cystine-mediated oxidative defense in Lactobacillus reuteri BR11. J Bacteriol 191: 1827–1837.
[20]  Park S, Imlay JA (2003) High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. J Bacteriol 185: 1942–1950.
[21]  Weber H, Engelmann S, Becher D, Hecker M (2004) Oxidative stress triggers thiol oxidation in the glyceraldehyde-3-phosphate dehydrogenase of Staphylococcus aureus. Mol Microbiol 52: 133–140.
[22]  Gusarov I, Nudler E (2005) NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Natl Acad Sci U S A 102: 13855–13860.
[23]  Liebeke M, Pother DC, van Duy N, Albrecht D, Becher D, et al. (2008) Depletion of thiol-containing proteins in response to quinones in Bacillus subtilis. Mol Microbiol 69: 1513–1529.
[24]  Nguyen TT, Eiamphungporn W, Mader U, Liebeke M, Lalk M, et al. (2009) Genome-wide responses to carbonyl electrophiles in Bacillus subtilis: control of the thiol-dependent formaldehyde dehydrogenase AdhA and cysteine proteinase YraA by the MerR-family regulator YraB (AdhR). Mol Microbiol 71: 876–894.
[25]  Soutourina O, Poupel O, Coppee JY, Danchin A, Msadek T, et al. (2009) CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulfur source utilization and plays a role in biofilm formation. Mol Microbiol 73: 194–211.
[26]  Tanous C, Soutourina O, Raynal B, Hullo MF, Mervelet P, et al. (2008) The CymR Regulator in Complex with the Enzyme CysK Controls Cysteine Metabolism in Bacillus subtilis. J Biol Chem 283: 35551–35560.
[27]  Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339: 520–532.
[28]  Gordon RJ, Lowy FD (2008) Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 46: Suppl 5S350–359.
[29]  Clements MO, Foster SJ (1999) Stress resistance in Staphylococcus aureus. Trends Microbiol 7: 458–462.
[30]  Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77: 755–776.
[31]  Leichert LI, Scharf C, Hecker M (2003) Global characterization of disulfide stress in Bacillus subtilis. J Bacteriol 185: 1967–1975.
[32]  Chasteen TG, Fuentes DE, Tantalean JC, Vasquez CC (2009) Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev 33: 820–832.
[33]  Sitthisak S, Knutsson L, Webb JW, Jayaswal RK (2007) Molecular characterization of the copper transport system in Staphylococcus aureus. Microbiology 153: 4274–4283.
[34]  Horsburgh MJ, Clements MO, Crossley H, Ingham E, Foster SJ (2001) PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun 69: 3744–3754.
[35]  Horsburgh MJ, Ingham E, Foster SJ (2001) In Staphylococcus aureus, fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol 183: 468–475.
[36]  Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, et al. (2002) MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44: 1269–1286.
[37]  Lindsay JA, Foster SJ (2001) zur: a Zn(2+)-responsive regulatory element of Staphylococcus aureus. Microbiology 147: 1259–1266.
[38]  Ballal A, Manna AC (2009) Regulation of superoxide dismutase (sod) genes by SarA in Staphylococcus aureus. J Bacteriol 191: 3301–3310.
[39]  Karavolos MH, Horsburgh MJ, Ingham E, Foster SJ (2003) Role and regulation of the superoxide dismutases of Staphylococcus aureus. Microbiology 149: 2749–2758.
[40]  Auger S, Gomez MP, Danchin A, Martin-Verstraete I (2005) The PatB protein of Bacillus subtilis is a C-S-lyase. Biochimie 87: 231–238.
[41]  Kubica M, Guzik K, Koziel J, Zarebski M, Richter W, et al. (2008) A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS One 3: e1409.
[42]  Nizet V (2007) Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. J Allergy Clin Immunol 120: 13–22.
[43]  von Kockritz-Blickwede M, Rohde M, Oehmcke S, Miller LS, Cheung AL, et al. (2008) Immunological mechanisms underlying the genetic predisposition to severe Staphylococcus aureus infection in the mouse model. Am J Pathol 173: 1657–1668.
[44]  Sakoulas G, Eliopoulos GM, Moellering RC Jr, Wennersten C, Venkataraman L, et al. (2002) Accessory gene regulator (agr) locus in geographically diverse Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Antimicrob Agents Chemother 46: 1492–1502.
[45]  Traber KE, Lee E, Benson S, Corrigan R, Cantera M, et al. (2008) agr function in clinical Staphylococcus aureus isolates. Microbiology 154: 2265–2274.
[46]  Chang W, Small DA, Toghrol F, Bentley WE (2006) Global transcriptome analysis of Staphylococcus aureus response to hydrogen peroxide. J Bacteriol 188: 1648–1659.
[47]  Wolf C, Hochgrafe F, Kusch H, Albrecht D, Hecker M, et al. (2008) Proteomic analysis of antioxidant strategies of Staphylococcus aureus: diverse responses to different oxidants. Proteomics 8: 3139–3153.
[48]  Almeida CE, Felicio DL, Galhardo RS, Cabral-Neto JB, Leitao AC (1999) Synergistic lethal effect between hydrogen peroxide and neocuproine (2,9-dimethyl 1,10-phenanthroline) in Escherichia coli. Mutat Res 433: 59–66.
[49]  Macomber L, Rensing C, Imlay JA (2007) Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 189: 1616–1626.
[50]  Phan TN, Kirsch AM, Marquis RE (2001) Selective sensitization of bacteria to peroxide damage associated with fluoride inhibition of catalase and pseudocatalase. Oral Microbiol Immunol 16: 28–33.
[51]  Truong DH, Eghbal MA, Hindmarsh W, Roth SH, O'Brien PJ (2006) Molecular mechanisms of hydrogen sulfide toxicity. Drug Metab Rev 38: 733–744.
[52]  Yaegaki K, Qian W, Murata T, Imai T, Sato T, et al. (2008) Oral malodorous compound causes apoptosis and genomic DNA damage in human gingival fibroblasts. J Periodontal Res 43: 391–399.
[53]  Kari C, Nagy Z, Kovacs P, Hernadi F (1971) Mechanism of the growth inhibitory effect of cysteine on Escherichia coli. J Gen Microbiol 68: 349–356.
[54]  Stipanuk MH, Dominy JE Jr, Lee JI, Coloso RM (2006) Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 136: 1652S–1659S.
[55]  Palazzolo-Ballance AM, Suquet C, Hurst JK (2007) Pathways for intracellular generation of oxidants and tyrosine nitration by a macrophage cell line. Biochemistry 46: 7536–7548.
[56]  Martinez-Pulgarin S, Dominguez-Bernal G, Orden JA, de la Fuente R (2009) Simultaneous lack of catalase and beta-toxin in Staphylococcus aureus leads to increased intracellular survival in macrophages and epithelial cells and to attenuated virulence in murine and ovine models. Microbiology 155: 1505–1515.
[57]  Somerville GA, Proctor RA (2009) At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 73: 233–248.
[58]  Garzoni C, Francois P, Huyghe A, Couzinet S, Tapparel C, et al. (2007) A global view of Staphylococcus aureus whole genome expression upon internalization in human epithelial cells. BMC Genomics 8: 171.
[59]  Fujimoto DF, Higginbotham RH, Sterba KM, Maleki SJ, Segall AM, et al. (2009) Staphylococcus aureus SarA is a regulatory protein responsive to redox and pH that can support bacteriophage lambda integrase-mediated excision/recombination. Mol Microbiol 74: 1445–1458.
[60]  Chen PR, Nishida S, Poor CB, Cheng A, Bae T, et al. (2009) A new oxidative sensing and regulation pathway mediated by the MgrA homologue SarZ in Staphylococcus aureus. Mol Microbiol 71: 198–211.
[61]  Poor CB, Chen PR, Duguid E, Rice PA, He C (2009) Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureus. J Biol Chem 284: 23517–23524.
[62]  Cucarella C, Solano C, Valle J, Amorena B, Lasa I, et al. (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183: 2888–2896.
[63]  Novick RP (1991) Genetic systems in staphylococci. Methods Enzymol 204: 587–636.
[64]  Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14863–14868.
[65]  Lopez del Castillo Lozano M, Tache R, Bonnarme P, Landaud S (2007) Evaluation of a quantitative screening method for hydrogen sulfide production by cheese-ripening microorganisms: the first step towards L-cysteine catabolism. J Microbiol Methods 69: 70–77.
[66]  Hullo MF, Auger S, Soutourina O, Barzu O, Yvon M, et al. (2007) Conversion of methionine to cysteine in Bacillus subtilis and its regulation. J Bacteriol 189: 187–197.
[67]  Palmqvist N, Patti JM, Tarkowski A, Josefsson E (2004) Expression of staphylococcal clumping factor A impedes macrophage phagocytosis. Microbes Infect 6: 188–195.
[68]  Schlag S, Nerz C, Birkenstock TA, Altenberend F, Gotz F (2007) Inhibition of staphylococcal biofilm formation by nitrite. J Bacteriol 189: 7911–7919.
[69]  Richardson AR, Dunman PM, Fang FC (2006) The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol 61: 927–939.
[70]  Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK, et al. (2002) sigmaB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 184: 5457–5467.
[71]  Sullivan MA, Yasbin RE, Young FE (1984) New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene 29: 21–26.

Full-Text

comments powered by Disqus