All Title Author
Keywords Abstract

Production of proinflammatory cytokines in the human THP-1 monocyte cell line following induction by Tp0751, a recombinant protein of Treponema pallidum

DOI: 10.1007/s11427-010-0038-z

Keywords: Treponema pallidum,Tp0751,nuclear factor κB,proinflammatory cytokines

Full-Text   Cite this paper   Add to My Lib


The tissue destruction characteristic of syphilis infection may be caused by inflammation due to Treponema pallidum and the ensuing immune responses to the pathogen. T. pallidum membrane proteins are thought to be potent inducers of inflammation during the early stages of infection. However, the actual membrane proteins that induce inflammatory cytokine production are not known, nor are the molecular mechanisms responsible for triggering and sustaining the inflammatory cascades. In the present study, Tp0751 recombinant protein from T. pallidum was found to induce the production of proinflammatory cytokines, including TNF-α, IL-1βand IL-6, in a THP-1 human monocyte cell line. The signal transduction pathways involved in the production of these cytokines were then further investigated. No inhibition of TNF-a, IL-1β, or IL-6 production was observed following treatment with the SAPK/JNK specific inhibitor SP600125 or with an ERK inhibitor PD98059. By contrast, anti-TLR2 mAb, anti-CD14 mAb, and the p38 inhibitor SB203580 significantly inhibited the production of all three cytokines. In addition, pyrrolidine dithiocarbamate (PDTC), a specific inhibitor of NF-κB, profoundly inhibited the production of these cytokines. Tp0751 treatment strongly activated NF-κB, as revealed by Western blotting. However, NF-κB translocation was significantly inhibited by treatment with PDTC. These results indicated that TLR2, CD14, MAPKs/p38, and NF-κB might be implicated in the inflammatory reaction caused by T. pallidum infection.


comments powered by Disqus