All Title Author
Keywords Abstract

PLOS ONE  2009 

Qualitative and Quantitative Detection of Chlamydophila pneumoniae DNA in Cerebrospinal Fluid from Multiple Sclerosis Patients and Controls

DOI: 10.1371/journal.pone.0005200

Full-Text   Cite this paper   Add to My Lib

Abstract:

A standardized molecular test for the detection of Chlamydophila pneumoniae DNA in cerebrospinal fluid (CSF) would assist the further assessment of the association of C. pneumoniae with multiple sclerosis (MS). We developed and validated a qualitative colorimetric microtiter plate-based PCR assay (PCR-EIA) and a real-time quantitative PCR assay (TaqMan) for detection of C. pneumoniae DNA in CSF specimens from MS patients and controls. Compared to a touchdown nested-PCR assay, the sensitivity, specificity, and concordance of the PCR-EIA assay were 88.5%, 93.2%, and 90.5%, respectively, on a total of 137 CSF specimens. PCR-EIA presented a significantly higher sensitivity in MS patients (p = 0.008) and a higher specificity in other neurological diseases (p = 0.018). Test reproducibility of the PCR-EIA assay was statistically related to the volumes of extract DNA included in the test (p = 0.033); a high volume, which was equivalent to 100 μl of CSF per reaction, yielded a concordance of 96.8% between two medical technologists running the test at different times. The TaqMan quantitative PCR assay detected 26 of 63 (41.3%) of positive CSF specimens that tested positive by both PCR-EIA and nested-PCR qualitative assays. None of the CSF specimens that were negative by the two qualitative PCR methods were detected by the TaqMan quantitative PCR. The PCR-EIA assay detected a minimum of 25 copies/ml C. pneumoniae DNA in plasmid-spiked CSF, which was at least 10 times more sensitive than TaqMan. These data indicated that the PCR-EIA assay possessed a sensitivity that was equal to the nested-PCR procedures for the detection of C. pneumoniae DNA in CSF. The TaqMan system may not be sensitive enough for diagnostic purposes due to the low C. pneumoniae copies existing in the majority of CSF specimens from MS patients.

References

[1]  Grayston JT, Campbell LA, Kuo CC, Mordhorst CH, P. Saikku P, et al. (1990) A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis 161: 618–625.
[2]  Stratton CW, Wheldon DB (2006) Multiple sclerosis: an infectious syndrome involving Chlamydophila pneumoniae. Trends Microbiol 14: 474–479.
[3]  Fainardi E, Castellazzi M, Seraceni S, Granieri E, Contini C (2008) Under the microscope: focus on Chlamydia pneumoniae infection and multiple sclerosis. Curr Neurovasc Res 5: 60–70.
[4]  Boman J, Allard A, Persson K, Lundborg M, Juto P, et al. (1997) Rapid diagnosis of respiratory Chlamdyia pneumoniae infection by nested touchdown polymerase chain reaction compared with culture and antigen detection by EIA. J Infect Dis 175: 1523–1526.
[5]  Boman J, Gaydos CA, Quinn TC (1999) Molecular diagnosis of Chlamydia pneumoniae infection. J Clin Microbiol 37: 3791–3799.
[6]  Yan Y, Silvennoinen-Kassinen S, Leinonen M, Saikku P (2005) Methodological aspects affecting the infectivity of Chlamydia pneumoniae in cell cultures in vitro. J Microbiol Methods 61: 127–130.
[7]  Mahony JB, Chong S, Coombes BK, Smieja M, Petrich A (2000) Analytical sensitivity, reproducibility of results, and clinical performance of five PCR assays for detecting Chlamydia pneumoniae DNA in peripheral blood mononuclear cells. J Clin Microbiol 38: 2622–2627.
[8]  Fukano H (2004) Comparison of five PCR assays for detecting Chlamydia pneumoniae DNA. Microbiol Immunol 48: 441–448.
[9]  Dowell SF, Peeling RW, Boman J, Carlone GM, Fields BS, et al. (2001) Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Diseases Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada). Clin Infect Dis 33: 492–503.
[10]  Yamamoto Y (2002) PCR in diagnosis of infection: detection of bacteria in cerebrospinal fluids. Clin Diagn Lab Immunol 9: 508–514.
[11]  Sriram S, Stratton CW, Yao S, Tharp A, Ding L, et al. (1999) Chlamydia pneumoniae infection of the central nervous system in multiple sclerosis. Ann Neurol 46: 6–14.
[12]  Ikejima H, Haranaga S, Takemura H, Kamo T, Takahashi Y, et al. (2001) PCR-based method for isolation and detection of Chlamdyia pneumoniae DNA in cerebrospinal fluids. Clin Diagn Lab Immunol 8: 499–502.
[13]  Black CM, Fields PI, Messmer TO, Berdal BP (1994) Detection of Chlamydia pneumoniae in clinical specimens by polymerase chain reaction using nested primers. Eur J Clin Microbiol Infect Dis 13: 752–756.
[14]  Smalling TW, Sefers SE, Li HJ, Tang YW (2002) Molecular approaches to detecting herpes simplex and enteroviruses in the central nervous system. J Clin Microbiol 40: 2317–2322.
[15]  Tang YW, Rys PN, Rutledge BJ, Mitchell PS, Smith TF, et al. (1998) Comparative evaluation of colometric microtiter plate systems for detection of herpes simplex virus in cerebrospinal fluid. J Clin Microbiol 36: 2714–2717.
[16]  Ng SY, Gunning P, Eddy R, Ponte P, Leavitt J, et al. (1985) Evolution of the functional human beta-actin gene and its multi-pseudogene family: conservation of noncoding regions and chromosomal dispersion of pseudogenes. Mol Cell Biol 5: 2720–2732.
[17]  Melgosa P, Kuo CC, Campbell LA (1991) Sequence analysis of the major outer membrane protein gene of Chlamydia pneumoniae. Infect Immun 59: 2195–2199.
[18]  Watson MW, Lambden PR, Clarke IN (1991) Genetic diversity and identification of human infection by amplification of the chlamydial 60-kilodalton cysteine-rich outer membrane protein gene. J Clin Microbiol 29: 1188–1193.
[19]  Tang YW, Mitchell PS, Espy MJ, Smith TF, Persing DH (1999) Molecular diagnosis of herpes simplex virus infections in the central nervous system. J Clin Microbiol 37: 2127–2136.
[20]  Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 88: 7276–7280.
[21]  Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6: 986–994.
[22]  Khan MA, Potter CW (1996) The nPCR detection of Chlamydia pneumoniae and Chlamydia trachomatis in children hospitalized for bronchiolitis. J Infect 33: 173–175.
[23]  Sriram S, Yao SY, Stratton C, Calabresi P, Mitchell WM, et al. (2002) Comparative study of the presence of Chlamydia pneumoniae in cerebral spinal fluid from clinically definite and monosymptomatic multiple sclerosis. Clin Diagn Lab Immunol 9: 1332–1337.
[24]  Sriram S, Mitchell W, Stratton C (1998) Multiple sclerosis associated with Chlamydia pneumoniae infection of the CNS. Neurology 50: 571–572.
[25]  Layh-Schmitt G, Bendi C, Hildt U, Dong-Si T, Juttler E, et al. (2000) Evidence for infection with Chlamydia pneumoniae in a subgroup of patients with multiple sclerosis. Ann Neurol 47: 652–655.
[26]  Sotgiu S, Piana A, Pugliatti M, Sotgiu A, Deiana GA, et al. (2001) Chlamydia pneumoniae in the cerebrospinal fluid of patients with multiple sclerosis and neurological controls. Mult Scler 7: 371–374.
[27]  Gieffers J, Pohl D, Treib J, Dittmann R, Stephan C, et al. (2001) Presence of Chlamydia pneumoniae DNA in the cerebral spinal fluid is a common phenomenon in a variety of neurological diseases and not restricted to multiple sclerosis. Ann Neurol 49: 585–589.
[28]  Hao Q, Miyashita N, Wang H-Y, Matsushima T, Saida T (2002) Chlamydia pneumoniae infection associated with enhanced MRI spinal lesions in multiple sclerosis. Mult Scler 8: 436–440.
[29]  Grimaldi LM, Pincherle A, Martinelli-Boneschi F, Fillippi M, Patti F, et al. (2003) An MRI study of Chlamydia pneumoniae infection in Italian multiple sclerosis patients. Mult Scler 9: 467–471.
[30]  Contini C, Cultrera R, Seraceni S, Castellazzi M, Granieri E, et al. (2004) Cerebrospinal fluid molecular demonstration of Chlamydia pneumoniae DNA is associated to clinical and brain magnetic resonance imaging activity in a subset of patients with relapsing-remitting multiple sclerosis. Mult Scler 10: 360–369.
[31]  Dong-Si T, Weber J, Liu YB, Buhmann C, Bauer H, et al. (2004) Increased prevalence of and gene transcription by Chlamydia pneumoniae in cerebrospinal fluid of patients with relapsing-remitting multiple sclerosis. J Neurol 251: 542–547.
[32]  Contini C, Seraceni S, Castellazzi M, Granieri E, Fainaardi E (2008) Chlamydophila pneumoniae DNA and mRNA transcript levels in peripheral blood mononuclear cells and cerebrospinal fluid of patients with multiple sclerosis. Neurosci Res 62: 58–61.
[33]  Boman J, Roblin PM, Sundstrom P, Sandstrom M, Hammerschlag MR (2000) Failure to detect Chlamydia pneumoniae in the central nervous system of patients with MS. Neurology 54: 265.
[34]  Hammerschlag MR, Ke Z, Lu F, Roblin P, Boman J, Kalman B (2000) Is Chlamydia pneumoniae present in brain lesions of patients with multiple sclerosis? J Clin Microbiol 38: 4274–4276.
[35]  Morre SA, De Groot CJ, Killestein J, Meijer CJ, Polman CH, et al. (2000) Is Chlamydia pneumoniae present in the central nervous system of multiple sclerosis patients? Ann Neurol 48: 399.
[36]  Pucci E, Taus C, Cartechini E, Morelli M, Giuliani G, et al. (2000) Lack of Chlamydia infection of the central nervous system in multiple sclerosis. Ann Neurol 48: 399–400.
[37]  Saiz A, Marcos MA, Graus F, Vidal J, Jimenez de Anta MT (2001) No evidence of CNS infection with Chlamydia pneumoniae in patients with multiple sclerosis. J Neurol 248: 617–618.
[38]  Derfuss T, Gurkov R, Then Bergh F, Goebels N, Hartmann M, et al. (2001) Intrathecal antibody production against Chlamydia pneumoniae in multiple sclerosis is part of a polyspecific immune response. Brain 124: 1325–1335.
[39]  Numazaki K, Chibar S (2002) Failure to detect Chlamydia pneumoniae in the central nervous system of patients with MS. Neurology 57: 746.
[40]  Furrows SJ, Hartley JC, Bell J, Silver N, Losseff N, et al. (2004) Chlamydophila pneumoniae infection of the central nervous system in patients with multiple sclerosis. J Neruol Neurosurg Psychiatry 75: 152–154.
[41]  Kaufman M, Gaydos CA, Sriram S, Boman J, Tondella ML, et al. (2002) Is Chlamydia pneumoniae found in spinal fluid samples from multiple sclerosis patients? Conflicting results. Mult Scler 8: 289–294.
[42]  Fredricks DN, Relman DA (1999) Application of polymerase chain reaction to the diagnosis of infectious diseases. Clin Infect Dis 29: 475–486.
[43]  Boman J, Hammerschlag MR (2002) Chlamydia pneumoniae and atherosclerosis: critical assessment of diagnostic methods and relevance to treatment studies. Clin Microbiol Rev 15: 1–20.
[44]  Apfalter P, Blasi R, Boman J, Gaydos CA, Kundi M, et al. (2001) Multicenter comparison trial of DNA extraction methods and PCR assays for detection of Chlamydia pneumoniae in endarterectomy specimens. J Clin Microbiol 39: 519–524.
[45]  Smieja M, Mahony JB, Goldsmith CH, Chong S, Petrich A, et al. (2001) Replicate PCR testing and probit analysis for detection and quantitation of Chlamdyia pneumoniae in clinical specimens. J Clin Microbiol 39: 1796–1801.
[46]  Inman-Bamber J, Wan C, Gardam T, Vohra R, van Daal A, et al. (2002) Novel PCR-EIA method for the detection of Chlamydia pneumoniae in respiratory specimens. Mol Cell Probes 16: 57–61.
[47]  Flamand L, Gravel A, Boutolleau D, Alvarez-Lafuente R, et al. (2008) Multicenter comparison of PCR assays for detection of human herpesvirus 6 DNA in serum. J Clin Microiol 46: 2700–2706.
[48]  Kuoppa Y, Bowman J, Scott L, Kumlin U, Eriksson I, et al. (2002) Quantitative detection of respiratory Chlamyidia pneumoniae infection by real-time PCR. J Clin Microbiol 40: 2273–2274.
[49]  Tondella ML, Talkington DF, Holloway BP, Dowell SF, Cowley K, et al. (2002) Development and evaluation of real-time PCR fluorescence assays for detection of Chlamydia pneumoniae. J Clin Microbiol 40: 575–583.
[50]  Sriram S, Ljunggren-Rose A, Yao S-Y, Whetsell WO Jr (2005) Detection of chlamydial bodies and antigens in the central nervous system of patients with multiple sclerosis. J Infect Dis 192: 1219–1228.
[51]  Kong G-Y, Kristensson K, Bentivoglio M (2002) Reaction of mouse brain oligodendrocytes and their precursors, astrocytes and microglia, to proinflammatory medicators circulating in the cerebrospinal fluid. GLIA 37: 191–205.

Full-Text

comments powered by Disqus