All Title Author
Keywords Abstract

PLOS ONE  2012 

Bifidobacterium breve with α-Linolenic Acid and Linoleic Acid Alters Fatty Acid Metabolism in the Maternal Separation Model of Irritable Bowel Syndrome

DOI: 10.1371/journal.pone.0048159

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (109 microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals.

References

[1]  Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–U70.
[2]  Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027–1031.
[3]  Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology - Human gut microbes associated with obesity. Nature 444: 1022–1023.
[4]  Peterson DA, Frank DN, Pace NR, Gordon JI (2008) Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host & Microbe 3: 417–427.
[5]  Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, et al. (2009) Exploring the Diversity of the Bifidobacterial Population in the Human Intestinal Tract. Appl Environ Micro 75: 1534–1545.
[6]  Turroni F, Marchesi JR, Foroni E, Gueimonde M, Shanahan F, et al. (2009) Microbiomic analysis of the bifidobacterial population in the human distal gut. Isme Journal 3: 745–751.
[7]  Harmsen HJM, Wildeboer-Veloo ACM, Raangs GC, Wagendorp AA, Klijn N, et al. (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30: 61–67.
[8]  Penders J, Thijs C, Vink C, Stelma FF, Snijders B, et al. (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118: 511–521.
[9]  Chierici R, Fanaro S, Saccomandi D, Vigi V (2003) Advances in the modulation of the microbial ecology of the gut in early infancy. Acta Paediatrica 92: 56–63.
[10]  O'Flaherty S, Klaenhammer TR (2010) The role and potential of probiotic bacteria in the gut, and the communication between gut microflora and gut/host. Int Dairy J 20: 262–268.
[11]  Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361: 512–519.
[12]  Isolauri E, Arvola T, Sutas Y, Moilanen E, Salminen S (2000) Probiotics in the management of atopic eczema. Clin Exp Allergy 30: 1604–1610.
[13]  Kirjavainen PV, Arvola T, Salminen SJ, Isolauri E (2002) Aberrant composition of gut microbiota of allergic infants: a target of bifidobacterial therapy at weaning? Gut 51: 51–55.
[14]  Saavedra JM, Bauman NA, Oung I, Perman JA, Yolken RH (1994) Feeding of Bifidobacterium bifidum and Streptococus thermophilus to infants in hospital for prevention of diarrhea and shedding of rotavirus. Lancet 344: 1046–1049.
[15]  Clarke G, Cryan JF, Dinan TG, Quigley EM (2012) Review article: probiotics for the treatment of irritable bowel syndrome - focus on lactic acid bacteria. Aliment Pharmacol Ther 35: 403–413.
[16]  Eutamene H, Lamine F, Chabo C, Theodorou V, Rochat F, et al. (2007) Synergy between Lactobacillus paracasei and its bacterial products to counteract stress-induced gut permeability and sensitivity increase in rats. J Nutr 137: 1901–1907.
[17]  Thompson WG (2001) Probiotics for irritable bowel syndrome: a light in the darkness? Eur J Gastroenterol Hepatol 13: 1135–1136.
[18]  Drossman DA (1998) Presidential address: Gastrointestinal illness and the biopsychosocial model. Psychosom Med 60: 258–267.
[19]  Drossman DA, Camilleri M, Mayer EA, Whitehead WE (2002) AGA technical review on irritable bowel syndrome. Gastroenterology 123: 2108–2131.
[20]  Barreau F, Ferrier L, Fioramonti J, Bueno L (2007) New insights in the etiology and pathophysiology of irritable bowel syndrome: Contribution of neonatal stress models. Pediatr Res 62: 240–245.
[21]  Mayer EA (2000) The neurobiology of stress and gastrointestinal disease. Gut 47: 861–869.
[22]  Arebi N, Gurmany S, Bullas D, Hobson A, Stagg A, et al. (2008) Review article: the psychoneuroimmunology of irritable bowel syndrome - an exploration of interactions between psychological, neurological and immunological observations. Alimentary Pharmacology & Therapeutics 28: 830–840.
[23]  Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Meaney MJ, et al.. (1998) Long-term behavioral and neuroendocrine adaptations to adverse early experience. In: Mayer EA, Saper CB, editors; 1998 Mar 15–18; Sedona, Arizona. Elsevier Science Publ B V. pp. 81–103.
[24]  Pryce CR, Ruedi-Bettschen D, Dettling AC, Weston A, Russig H, et al. (2005) Long-term effects of early-life environmental manipulations in rodents and primates: Potential animal models in depression research. Neurosci Biobehav Rev 29: 649–674.
[25]  O'Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, et al. (2009) Early Life Stress Alters Behavior, Immunity, and Microbiota in Rats: Implications for Irritable Bowel Syndrome and Psychiatric Illnesses. Biol Psychiatry 65: 263–267.
[26]  Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biol Psychiatry 49: 1023–1039.
[27]  Wigger A, Neumann ID (1999) Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol Behav 66: 293–302.
[28]  O'Mahony S, Chua ASB, Quigley EMM, Clarke G, Shanahan F, et al. (2008) Evidence of an enhanced central 5HT response in irritable bowel syndrome and in the rat maternal separation model. Neurogastroenterology and Motility 20: 680–688.
[29]  Clarke G, O'Mahony SM, Hennessy AA, Ross P, Stanton C, et al. (2009) Chain reactions: Early-life stress alters the metabolic profile of plasma polyunsaturated fatty acids in adulthood. Behav Brain Res 205: 319–321.
[30]  Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, et al. (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170: 1179–1188.
[31]  Das UN (2006) Essential fatty acids. Curr Pharm Biotechnol 7: 455–455.
[32]  Rise P, Marangoni F, Galli C (2002) Regulation of PUFA metabolism: pharmacological and toxicological aspects. Prostaglandins Leukot Essent Fatty Acids 67: 85–89.
[33]  Calder PC (2005) Polyunsaturated fatty acids and inflammation; 2Sep 28–30; Paris, FRANCE. Churchill Livingstone 197–202.
[34]  Wall R, Ross RP, Fitzgerald GF, Stanton C (2010) Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev 68: 280–289.
[35]  Sanders TAB (2000) Polyunsaturated fatty acids in the food chain in Europe. Am J Clin Nutr 71: 176S–178S.
[36]  Das UN (2000) Beneficial effect(s) of n-3 fatty acids in cardiovascular diseases: but, why and how? Prostaglandins Leukot Essent Fatty Acids 63: 351–362.
[37]  Welch AA, Bingham SA, Ive J, Friesen MD, Wareham NJ, et al. (2006) Dietary fish intake and plasma phospholipid n-3 polyunsaturated fatty acid concentrations in men and women in the European Prospective Investigation into Cancer-Norfolk United Kingdom cohort. Am J Clin Nutr 84: 1330–1339.
[38]  Appleton KM, Rogers PJ, Ness AR (2008) Is there a role for n-3 long-chain polyunsaturated fatty acids in the regulation of mood and behaviour? A review of the evidence to date from epidemiological studies, clinical studies and intervention trials. Nutr Res Rev 21: 13–41.
[39]  Clarke G, Fitzgerald P, Hennessy AA, Cassidy EM, Quigley EMM, et al. (2010) Marked elevations in pro-inflammatory polyunsaturated fatty acid metabolites in females with irritable bowel syndrome. J Lipid Res 51: 1186–1192.
[40]  Dinan TG, Clarke G, Quigley EMM, Scott LV, Shanahan F, et al. (2008) Enhanced cholinergic-mediated increase in the pro-inflammatory cytokine IL-6 in irritable bowel syndrome: Role of muscarinic receptors. Am J Gastroenterol 103: 2570–2576.
[41]  Solakivi T, Kaukinen K, Kunnas T, Lehtimaki T, Maki M, et al. (2011) Serum fatty acid profile in subjects with irritable bowel syndrome. Scand J Gastroenterol 46: 299–303.
[42]  Bassaganya-Riera J, Hontecillas R, Beitz DC (2002) Colonic anti-inflammatory mechanisms of conjugated linoleic acid. Clin Nutr 21: 451–459.
[43]  Gaullier JM, Halse J, Hoye K, Kristiansen K, Fagertun H, et al. (2004) Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans. Am J Clin Nutr 79: 1118–1125.
[44]  Ip MM, Masso-Welch PA, Ip C (2003) Prevention of mammary cancer with conjugated linoleic acid: role of the stroma and the epithelium. J Mammary Gland Biol Neoplasia 8: 103–118.
[45]  Hennessy AA, Ross RP, Devery R, Stanton C (2011) The Health Promoting Properties of the Conjugated Isomers of alpha-Linolenic Acid. Lipids 46: 105–119.
[46]  Kelley DS, Bartolini GL, Newman JW, Vemuri M, Mackey BE (2006) Fatty acid composition of liver, adipose tissue, spleen, and heart of mice fed diets containing t10, c12-, and c9, t11-conjugated linoleic acid. Prostaglandins Leukot Essent Fatty Acids 74: 331–338.
[47]  Wall R, Ross RP, Shanahan F, O'Mahony L, O'Mahony C, et al. (2009) Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr 89: 1393–1401.
[48]  Wall R, Ross RP, Shanahan F, O'Mahony L, Kiely B, et al. (2010) Impact of Administered Bifidobacterium on Murine Host Fatty Acid Composition. Lipids 45: 429–436.
[49]  Wall R, Marques TM, O'Sullivan O, Ross RP, Shanahan F, et al. (2012) Contrasting effects of Bifidobacterium breve DPC 6330 and Bifidobacterium breve NCIMB 702258 on fatty acid metabolism and gut microbiota composition. Am J Clin Nutr 95: 1278–1287.
[50]  Guinane CM, Barrett E, Fitzgerald GF, van Sinderen D, Ross RP, et al. (2011) Genome Sequence of Bifidobacterium breve DPC 6330, a Strain Isolated from the Human Intestine. J Bacteriol 193: 6799–6800.
[51]  Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipds from animal tissues. J Biol Chem 226: 497–509.
[52]  O'Sullivan E, Grenham S, Barrett E, Fitzgerald P, Stanton C, et al. (2011) BDNF expression in the hippocampus of maternally separated rats: does Bifidobacterium breve 6330 alter BDNF levels? Beneficial microbes 2: 199–207.
[53]  Kaur G, Cameron-Smith D, Garg M, Sinclair AJ (2011) Docosapentaenoic acid (22:5n-3): A review of its biological effects. Prog Lipid Res 50: 28–34.
[54]  Martins JG (2009) EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr 28: 525–542.
[55]  Fukushima M, Yamada A, Endo T, Nakano M (1999) Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on Delta 6-desaturase activity in the livers of rats fed a fat- and cholesterol-enriched diet. Nutrition 15: 373–378.
[56]  Dulin WE (1956) Effects of corticosterone, cortisone and hydrocortisone on fat metabolism in the chick; 1956. Royal Society of Medicine 253–255.
[57]  Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH (2007) Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56: 1522–1528.
[58]  Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, et al. (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc National Acad Sci USA 108: 16050–16055.
[59]  Innis SM (2007) Dietary (n-3) fatty acids and brain development. J Nutr 137: 855–859.
[60]  Maekawa M, Takashima N, Matsumata M, Ikegami S, Kontani M, et al. (2009) Arachidonic Acid Drives Postnatal Neurogenesis and Elicits a Beneficial Effect on Prepulse Inhibition, a Biological Trait of Psychiatric Illnesses. Plos One 4
[61]  Yurko-Mauro K, McCarthy D, Rom D, Nelson EB, Ryan AS, et al. (2010) Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers & Dementia 6: 456–464.
[62]  Allergies PoDPNa (2009) Scientific opinion of the panel on dietetic products, nutrition and allergies on a request from Mead Johnson Nutritionals on DHA and ARA in brain development. EFSA Journal 1000: 1–13.
[63]  Calder PC (2006) Polyunsaturated fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids 75: 197–202.
[64]  Mori TA, Beilin LJ (2004) Omega-3 fatty acids and inflammation. Curr Atheroscler Rep 6: 461–467.
[65]  Browning LM (2003) n-3 Polyunsaturated fatty acids, inflammation and obesity-related disease. Proc Nutr Soc 62: 447–453.
[66]  McKernan DP, Fitzgerald P, Dinan TG, Cryan JF (2010) The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat. Neurogastroenterology and Motility 22: 1029–+.
[67]  Kassinen A, Krogius-Kurikka L, Makivuokko H, Rinttila T, Paulin L, et al. (2007) The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133: 24–33.
[68]  Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, et al. (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134: 933–944.
[69]  Dimopoulos N, Watson M, Sakamoto K, Hundal HS (2006) Differential effects of palmitate and palmitoleate on insulin action and glucose utilization in rat L6 skeletal muscle cells. Biochem J 399: 473–481.
[70]  Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY (2003) Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes 52: 726–733.
[71]  Sauma L, Stenkula KG, Kjolhede P, Stralfors P, Soderstrom M, et al. (2006) PPAR-gamma response element activity in intact primary human adipocytes: effects of fatty acids. Nutrition 22: 60–68.
[72]  De Fabiani E (2011) The true story of palmitoleic acid: Between myth and reality. Eur J Lipid Sci Tech 113: 809–811.

Full-Text

comments powered by Disqus