全部 标题 作者
关键词 摘要

PLOS Genetics  2010 

Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development

DOI: 10.1371/journal.pgen.1001079

Full-Text   Cite this paper   Add to My Lib

Abstract:

Arachnomelia is a monogenic recessive defect of skeletal development in cattle. The causative mutation was previously mapped to a ~7 Mb interval on chromosome 5. Here we show that array-based sequence capture and massively parallel sequencing technology, combined with the typical family structure in livestock populations, facilitates the identification of the causative mutation. We re-sequenced the entire critical interval in a healthy partially inbred cow carrying one copy of the critical chromosome segment in its ancestral state and one copy of the same segment with the arachnomelia mutation, and we detected a single heterozygous position. The genetic makeup of several partially inbred cattle provides extremely strong support for the causality of this mutation. The mutation represents a single base insertion leading to a premature stop codon in the coding sequence of the SUOX gene and is perfectly associated with the arachnomelia phenotype. Our findings suggest an important role for sulfite oxidase in bone development.

References

[1]  Rieck GW, Schade W (1975) Die Arachnomelie (Spinnengliedrigkeit), ein neues erbliches letales Missbildungssyndrom des Rindes. Dtsch Tier?rztl Wochenschr 82: 342–347.
[2]  K?nig H, Gaillard C, Chavaz J, Hunziker F, Tontis A (1987) Prüfung von Schweizer Braunvieh-Bullen auf das vererbte Syndrom der Arachnomelie und Arthrogrypose (SAA) durch Untersuchung der Nachkommen im Fetalstadium. Tier?rztl Umsch 42: 692–697.
[3]  Testoni S, Gentile A (2004) Arachnomelia in four Italian Brown calves. Vet Rec 155: 372.
[4]  Buitkamp J, Luntz B, Emmerling R, Reichenbach HD, Weppert M, et al. (2008) Syndrome of arachnomelia in Simmental cattle. BMC Vet Res 4: 39.
[5]  Singleton AC, Mitchell AL, Byers PH, Potter KA, Pace JM (2005) Bovine model of Marfan syndrome results from an amino acid change (c.3598G >A, p.E1200K) in a calcium-binding epidermal growth factor-like domain of fibrillin-1. Hum Mutat 25: 348–352.
[6]  Dr?gemüller C, Rossi M, Gentile A, Testoni S, J?rg H, et al. (2009) Arachnomelia in Brown Swiss cattle maps to Chromosome 5. Mamm Genome 20: 53–59.
[7]  Buitkamp J, Kühn C, Semmer J, G?tz KU (2009) Assignment of the locus for arachnomelia syndrome to bovine chromosome 23 in Simmental cattle. Anim Genet online early. doi:10.1111/j.1365-2052.2009.01933.x.
[8]  Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, et al. (2007) Direct selection of human genomic loci by microarray hybridization. Nat. Methods 4: 903–905.
[9]  Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME (2007) Microarray-based genomic selection for high-throughput resequencing. Nat Methods 4: 907–909.
[10]  Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, et al. (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39: 1522–1527.
[11]  Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, et al. (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461: 272–276.
[12]  Ng SB Buckingham KJ, Lee C, Bigham AW, Tabor HK, et al. (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42: 30–35.
[13]  Volpi L, Roversi G, Colombo EA, Leijsten N, Concolino D, et al. (2010) Targeted next-generation sequencing appoints c16orf57 as clericuzio-type poikiloderma with neutropenia gene. Am J Hum Genet 86: 72–76.
[14]  Rehman AU, Morell RJ, Belyantseva IA, Khan SY, Boger ET, et al. (2010) Targeted Capture and Next-Generation Sequencing Identifies C9orf75, Encoding Taperin, as the Mutated Gene in Nonsyndromic Deafness DFNB79. Am J Hum Genet 86: 378–388.
[15]  D'Ascenzo M, Meacham C, Kitzman J, Middle C, Knight J, et al. (2009) Mutation discovery in the mouse using genetically guided array capture and resequencing. Mamm Genome 20: 424–436.
[16]  Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456: 53–59.
[17]  Elsik CG, Tellam RL, Worley KC, Gibbs RA, et al. Bovine Genome Sequencing and Analysis Consortium (2009) The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324: 522–528.
[18]  Fuschini E, Fries R, Stocker H (1992) Malformations and genetic disorders in cattle: Registration, frequencies and control of heriditary diseases in the A.I. derived Braunvieh population [in German]. Wien Tier?rztl Mschr 79: 161–165.
[19]  Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, et al. (1997) Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91: 973–983.
[20]  Johnson JL, Coyne KE, Garrett RM, Zabot MT, Dorche C, et al. (2002) Isolated sulfite oxidase deficiency: identification of 12 novel SUOX mutations in 10 patients. Hum Mutat 20: 74.
[21]  Garrett RM, Johnson JL, Graf TN, Feigenbaum A, Rajagopalan KV (1998) Human sulfite oxidase R160Q: identification of the mutation in a sulfite oxidase-deficient patient and expression and characterization of the mutant enzyme. Proc Natl Acad Sci USA 95: 6394–6398.
[22]  Seidahmed MZ, Alyamani EA, Rashed MS, Saadallah AA, Abdelbasit OB, et al. (2005) Total truncation of the molybdopterin/dimerization domains of SUOX protein in an Arab family with isolated sulfite oxidase deficiency. Am J Med Genet 136A: 205–209.
[23]  Kraus JP (1994) Komrower Lecture. Molecular basis of phenotype expression in homocystinuria. J Inherit Metab Dis 17: 383–390.
[24]  R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN. 3-900051-07-0.

Full-Text

comments powered by Disqus