%0 Journal Article %T Fenton Technology for Wastewater Treatment: Dares and Trends %A Djamel Ghernaout %A Noureddine Elboughdiri %A Saad Ghareba %J Open Access Library Journal %V 7 %N 1 %P 1-26 %@ 2333-9721 %D 2020 %I Open Access Library %R 10.4236/oalib.1106045 %X
Fenton reaction remains an efficient technique for decomposing recalcitrant organic contaminants. Nevertheless, traditional Fenton response has many lim-itations like the necessity of acidic pH circumstance, the formation of iron sludge and the need for elevated chemical introductions. Procedures like het-erogeneous Fenton, fluidized-bed Fenton, employment of chelating products and in situ formations of Fenton¡¯s reagent have been examined as likely solu-tions to such drawbacks. Bello et al. [1] presented an excellent discussion of the restrictions of Fenton reaction and the fresh manners for dealing with them and this work focuses on its main findings. The heterogeneous Fenton method stays the most largely examined thanks to the expansion achieved in catalysis. The fluidized-bed Fenton method has the capacity to diminish sludge formation and ameliorate technology efficiency. Chelating chemicals are employed to performing homogeneous Fenton at circumneutral pH, even if the potentially decisive impact of many chelating products remains a source of worry. In situ formation of Fenton¡¯s reagent via bio-electrochemical technique (bio-electro-Fenton) seems to be a likely manner to diminish the price related to Fenton¡¯s reagent. Despite the progress registered in the Fenton technologies, the classical process, and its ameliorated versions, membranes processes remain fundamental for secure wastewater treatment. As sure barriers towards pollution dispersal, processes such as nanofiltration should be coupled to Fen-ton techniques.
%K Wastewater Treatment %K Fenton Process %K Pharmaceuticals and Personal Care Products (PPCPs) %K Bio-Electro-Fenton %K Electro-Fenton Process %K Fluidized-Bed Fenton %U http://www.oalib.com/paper/5426114