全部 标题 作者
关键词 摘要


Modeling Wind Energy Using Copula

DOI: 10.4236/oalib.1104984, PP. 1-14

Subject Areas: Applied Statistical Mathematics

Keywords: Weibull, Nonparametric Estimation, Copula, Wind Speed

Full-Text   Cite this paper   Add to My Lib

Abstract

In most studies related to wind energy, the quantity of the air density is consid-ered constant, but actually, we know that it is variable and depending on others natural factors. We present a new procedure to estimate the wind density power energy by simulating the components of the air density. The procedure uses the copula theory and demonstrates that the estimated power energy is higher if the air density is not constant.

Cite this paper

Bahraoui, Z. , Bahraoui, F. and Bahraoui, M. A. (2018). Modeling Wind Energy Using Copula. Open Access Library Journal, 5, e4984. doi: http://dx.doi.org/10.4236/oalib.1104984.

References

[1]  Burton, T., Jenkins, N., Sharpe, D. and Bossanyi, E. (2001) Wind Energy Handbook. John Wiley and Sons, Inc., Chichester.
https://doi.org/10.1002/0470846062
[2]  Manwell, J., McGowan, J. and Rogers, A.L. (2010) Wind Energy Explained: Theory, Design. John Wiley and Sons.
[3]  Sklar, A. (1959) Fonctions de répartition a′n dimensions et leurs marges. Publications de Institut de Statistique de l’université de Paris, 8, 229-231.
[4]  Genest, C. and MacKay, J. (1986) The Joy of Copulas: Bivariate Distributions with Uniform Marginals. The American Statistician, 40, 280-283.
[5]  Genest, C. (1987) Frank’s Family of Bivariate Distributions. Biometrika, 74, 549-555.
https://doi.org/10.1093/biomet/74.3.549
[6]  McNeil, A.J., Frey, R. and Embrechts, P. (2005) Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, Princeton.
[7]  Genest, C. and Favre, A.C. (2007) Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask. Journal of Hydrologic Engineering, 12, 347-368.
https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347)
[8]  Coles, S. and Walshaw, D. (1994) Directional Modeling of Extreme Wind Speeds. Applied Statistics, 43, 139-157.
https://doi.org/10.2307/2986118
[9]  Soukissiana, T.H. and Karathanasia, F.E. (2017) On the Selection of Bivariate Parametric Models for Wind Data. Applied Energy, 188, 229-236.
https://doi.org/10.1016/j.apenergy.2016.11.097
[10]  Cao, J. and Yan, Z. (2017) Probabilistic Optimal Power Flow Considering Dependences of, Wind Speed among Wind Farms by the Pair-Copula Method. International of Electrical Power and Energy Systems, 84, 296-307.
https://doi.org/10.1016/j.ijepes.2016.06.008
[11]  D’Amicoa, G., Petronib, F. and Pratticoc, F. (2015) Wind Speed Prediction for Wind Farm Applications by Extreme Value Theory and Copulas. Journal of Wind Engineering and Industrial Aerodynamics, 145, 229-236.
https://doi.org/10.1016/j.jweia.2015.06.018
[12]  Pircalabu, A., Hvolbya, T., Jung, J. and Hog, H. (2017) Joint Price and Volumetric Risk in Wind Power Trading: A Copula Approach. Energy Economics, 62, 139-154.
https://doi.org/10.1016/j.eneco.2016.11.023
[13]  Bolancé, C., Bahraoui, Z. and Artis, M. (2014) Quantifying the Risk Using Copulate with Nonparametric Marginals. Insurance: Mathematics and Economics, 58, 46-56. https://doi.org/10.1016/j.insmatheco.2014.06.008
[14]  Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall, CRC Finance Series, London.
https://doi.org/10.1007/978-1-4899-3324-9
[15]  Wand, M.P. and Jones, M.C. (1995) Kernel Smoothing. Chapman and Hall, London. https://doi.org/10.1007/978-1-4899-4493-1
[16]  Pobockova, I. and Sedliackova, Z. (2014) Comparison of Four Methods for Estimating the Weibull Distribution Parameters. Applied Mathematical Sciences, 8, 4137-4149.
https://doi.org/10.12988/ams.2014.45389
[17]  Cohen, A.C. (1965) Maximum Likelihood Estimation in the Weibull Distribution Based on Complete and on Censored Samples. Technometrics, 7, 579-588.
https://doi.org/10.1080/00401706.1965.10490300
[18]  Joe, H. (1997) Multivariate Models and Dependence Concept. Chapman and Hall, London.
https://doi.org/10.1201/b13150
[19]  Nelsen, R.B. (2006) An Introduction to Copulas. 2nd Edition, Springer, Portland.
[20]  Sarmanov, O.V. (1966) Generalized Normal Correlation and Two-Dimensional Fréchet. Soviet Mathematics. Doklady, 25, 1207-1222.
[21]  Lee, M.L. (1996) Properties and Applications of the Sarmanov Family of Bivariate Distributions. Communications in Statistics-Theory and Methods, 25, 1207-1222.
https://doi.org/10.1080/03610929608831759
[22]  Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer, New York.
https://doi.org/10.1007/978-1-4613-8643-8
[23]  Nfaoui, H., Buret, J.J. and Sayigh, A.A.M. (1998) Wind Characteristics and Wind Energy Potential in Morocco. Solar Energy, 63, 51-60.
[24]  Genest, C. and Boies, J.C. (2003) Detecting Dependence with Kendall Plots. Journal of the American Statistical Association, 57, 275-284.
https://doi.org/10.1198/0003130032431
[25]  Nagler, T. (2014) Kernel Methods for Vine Copula Estimation. Universi at Munchen, München.
[26]  Nagler, T. (2017) Kdecopula: An R Package for the Kernel Estimation of Bivariate Copula Densities.
https://CRAN.R-project.org/package=kdecopula
[27]  Cherubini, U., Luciano, E. and Vecchiato, W. (2004) Copula Methods in Finance. Wiley, Chichester.
https://doi.org/10.1002/9781118673331
[28]  Akaike, H. (1973) Information Theory and an Extension of the Maximum Likelihood Principle. 2nd International Symposium on Information Theory, Tsahkadsor, 2-8 September 1971, 267-281.
[29]  Gr?nnrberg, S. and Hjort, N.L. (2014) The Copula Information Criteria. Scandinavian Journal of Statistics, 41, 436-459.
https://doi.org/10.1111/sjos.12042

Full-Text


comments powered by Disqus