全部 标题 作者
关键词 摘要


Interacting Dark Fluids in LRS Bianchi Type-II Universe

DOI: 10.4236/oalib.1104900, PP. 1-15

Subject Areas: Particle Physics

Keywords: LRS Bianchi Type-II Space-Time, Interacting Dark Fluids, Statefinder Parameters

Full-Text   Cite this paper   Add to My Lib

Abstract

At the present paper, Locally Rotationally Symmetric (LRS) Bianchi type-II cosmological model with interacting dark matter (DM) and holographic dark energy (DE) have been discussed. In order to obtain solutions of the field equations, it is assume that the shear scalar (σ) is proportional to expansion scalar (θ). To have a general description of holographic dark energy and dark matter, a phenomenological parameterization of dark energy in terms of its equation of state (EoS) has been taken. Statefinder diagnostic pair i.e.{r, s}is adopted to separate other existing dark energy models from this model. Here we discuss two models: when n=1/2, we obtain acyclic universe and the model converges into phantom region whereas when n=3/2, we get a expanding universe and the model converges into quintessence region. Some important geometrical and physical features regarding to this model have also been studied.

Cite this paper

Mete, V. G. , Murade, P. B. and Bansod, A. S. (2018). Interacting Dark Fluids in LRS Bianchi Type-II Universe. Open Access Library Journal, 5, e4900. doi: http://dx.doi.org/10.4236/oalib.1104900.

References

[1]  Perlmutter, S. (1999) Measurements of ? and Λ from 42 High-Redshift Supernovae. The Astrophysical Journal, 517, 565-586.
https://doi.org/10.1086/307221
[2]  Riess, A.G., Filippenko, A.V., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1032.
https://doi.org/10.1086/300499
[3]  Seljack, U., Makarov, A., et al. (2005) Cosmological Parameter Analysis including SDSS Ly-Alpha Forest and Galaxy Bias: Constraints on the Primordial Spectrum of Fluctuations, Neutrino Mass, and Dark Energy. Physical Review Journals, D71, Article ID: 103515.
[4]  Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., et al. (2003) First year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. The Astrophysical Journal Supplement Series, 148, 1-27.
https://doi.org/10.1086/377253
[5]  Jaffe, R.L. and Wilczek, F. (2003) Diquarks and Exotic Spectroscopy. Physical Review Letters, 91, Article ID: 232003.
https://doi.org/10.1103/PhysRevLett.91.232003
[6]  Hawkins Ed., Maddox, S., Cole, S., Madgwick, D., Norberg, P., et al. (2003) The 2dF Galaxy Redshift Survey: Correlation Functions, Peculiar Velocities and the Matter Density of the Universe. Monthly Notices of the Royal Astronomical Society, 346, 78-96.
https://doi.org/10.1046/j.1365-2966.2003.07063.x
[7]  Liddle, A.R. and Scherer, R.J. (1998) Classification of Scalar Field Potentials with Cosmological Scaling Solutions. Physical Review D, 59, Article ID: 023509.
https://doi.org/10.1103/PhysRevD.59.023509
[8]  Caldwell, R.R., Dave, R. and Steinhardt, P.J. (1998) Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters, 80, Article ID: 1582.
https://doi.org/10.1103/PhysRevLett.80.1582
[9]  Steinhardt, P.J., Wang, L.M. and Zlatev, I. (1999) Cosmological Tracking Solutions. Physical Review D, 59, Article ID: 123504.
https://doi.org/10.1103/PhysRevD.59.123504
[10]  Dvali, G.R., Gabadadze, G. and Porrati, M. (2000) Metastable Gravitons and Infinite Volume Extra Dimensions. Physics Letters B, 484, 112-118.
https://doi.org/10.1016/S0370-2693(00)00631-6
[11]  Capozziello, S., Carloni, S. and Troisi, A. (2003) Quintessence without Scalar Fields. Astronomy and Astrophysics, 1, 625.
[12]  Deffayet, L. (2001) Cosmology on a Brane in Minkowski Bulk. Physics Letters B, 502, 199-208.
https://doi.org/10.1016/S0370-2693(01)00160-5
[13]  Nojiri, S. and Odintsov, S.D. (2003) Modified Gravity with Negative and Positive Powers of Curvature: Unification of Inflation and Cosmic Acceleration. Physical Review D, 68, Article ID: 123512.
https://doi.org/10.1103/PhysRevD.68.123512
[14]  Carroll, S.M., et al. (2003) Is Cosmic Speed-Up Due to New Gravitational Physics? Physical Review D, 70, Article ID: 043528.
https://doi.org/10.1103/PhysRevD.70.043528
[15]  Townsend, P.K. and Wohlfarth, N.R. (2003) Accelerating Cosmologies from Compactification. Physical Review Letters, 91, Article ID: 061302.
https://doi.org/10.1103/PhysRevLett.91.061302
[16]  Maldacena, J.M. and Nunez, C. (2001) Supergravity Description of Field Theories on Curved Manifolds and a No Go Theorem. International Journal of Modern Physics A, 16, 822-855.
https://doi.org/10.1142/S0217751X01003937
[17]  Ohta, N. (2003) Accelerating Cosmologies from Spacelike Branes. Physical Review Letters, 91, Article ID: 061303.
https://doi.org/10.1103/PhysRevLett.91.061303
[18]  Bamba, K., et al. (2012) Dark Energy Cosmology: The Equivalent Description via Different Theoretical Models and Cosmography Tests. Astrophysics and Space Science, 342, 155-228.
https://doi.org/10.1007/s10509-012-1181-8
[19]  Yadav, A.K. and Yadav, L. (2010) Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter. International Journal of Theoretical Physics, 50, 218-227.
[20]  Kumar, S. and Yadav, A.K. (2011) Some Bianchi Type-V Models of Accelerating Universe with Dark Energy. Modern Physics Letters A, 26, 647-659.
https://doi.org/10.1142/S0217732311035018
[21]  Reddy, D.R.K., Satyanarayana, B. and Naidu, R.L. (2012) Five Dimensional Dark Energy Model in Scalar-Tensor Theory of Gravitation. Astrophysics and Space Science, 339, 401-404.
https://doi.org/10.1007/s10509-012-1007-8
[22]  Kumar, S. and Akarsu, O. (2012) Bianchi Type-II Models in the Presence of Perfect Fluid and Anisotropic Dark Energy. The European Physical Journal Plus, 127, 64.
https://doi.org/10.1140/epjp/i2012-12064-4
[23]  Naidu, R.L., et al. (2012) LRS Bianchi Type-II Dark Energy Model in a Scalar-Tensor Theory of Gravitation. Astrophysics and Space Science, 338, 333-336.
https://doi.org/10.1007/s10509-011-0935-z
[24]  Akarsu, O. and Kiling, C.B. (2010) Bianchi Type III Models with Anisotropic Dark Energy. General Relativity and Gravitation, 42, 763-775.
https://doi.org/10.1007/s10714-009-0878-7
[25]  Adhav, K.S., et al. (2011) Bianchi Type-V Cosmological Model with Linearly Varying Deceleration Parameter. International Journal of Mathematical Archive, 2, 2149-2156.
[26]  Katore, S.D., et al. (2012) Dynamics of Kantowski-Sachs Universe with Magnetized Anisotropic Dark Energy. Astrophysics and Space Science, 337, 393-400.
https://doi.org/10.1007/s10509-011-0826-3
[27]  Yadav, A.K., Rahaman, F. and Ray, S. (2011) Dark Energy Models with Variable Equation of State Parameter. International Journal of Theoretical Physics, 50, 871-881.
https://doi.org/10.1007/s10773-010-0628-3
[28]  Akarsu, O. and Kiling, C.B. (2010) De Sitter Expansion with Anisotropic Fluid in Bianchi Type-I Space-Time. Astrophysics and Space Science, 326, 315-322.
https://doi.org/10.1007/s10509-009-0254-9
[29]  Singh, T. and Chaubey, R. (2008) Bianchi Type-I Universe with Wet Dark Fluid. Pramana, 71, 447-458.
https://doi.org/10.1007/s12043-008-0124-y
[30]  Pradhan, A., et al. (2011) Bianchi Type-I Anisotropic Dark Energy Model with Constant Deceleration Parameter. International Journal of Theoretical Physics, 50, 2923-2938.
https://doi.org/10.1007/s10773-011-0793-z
[31]  Yadav, A.K. and Saha, B. (2012) LRS Bianchi-I Anisotropic Cosmological Model with Dominance of Dark Energy. Astrophysics and Space Science, 337, 759-765.
https://doi.org/10.1007/s10509-011-0861-0
[32]  Saha, B. and Yadav, A.K. (2012) Dark Energy Model with Variable q and ω in LRS Bianchi-II Space-Time. Astrophysics and Space Science, 341, 651-656.
https://doi.org/10.1007/s10509-012-1070-1
[33]  Susskind, L. (1995) The World as a Hologram. Journal of Mathematical Physics, 36, 6377.
https://doi.org/10.1063/1.531249
[34]  Hooft, G. (1993) Dimensional Reduction in Quantum Gravity. General Relativity and Quantum Cosmology. arXiv:gr-qc/9310026
[35]  Granda, L.N. and Oliveros, A. (2008) Infrared Cut-Off Proposal for the Holographic Density. Physics Letters B, 669, 275-277.
https://doi.org/10.1016/j.physletb.2008.10.017
[36]  Setare, M.R. (2007) Interacting Holographic Phantom. The European Physical Journal C, 50, 991-998.
https://doi.org/10.1140/epjc/s10052-007-0262-2
[37]  Setare, M.R. (2007) Holographic Tachyon Model of Dark Energy. Physics Letters B, 653, 116-121.
https://doi.org/10.1016/j.physletb.2007.08.011
[38]  Setare, M.R. (2007) The Holographic Dark Energy in Non-Flat Brans-Dicke Cosmology. Physics Letters B, 644, 99-103.
https://doi.org/10.1016/j.physletb.2006.11.033
[39]  Setare, M.R. (2007) Interacting Holographic Generalized Chaplygin Gas Model. Physics Letters B, 654, 1-6.
https://doi.org/10.1016/j.physletb.2007.08.038
[40]  Setare, M.R. and Vanegas, E.C. (2009) The Cosmological Dynamics of Interacting Holographic Dark Energy Model. International Journal of Modern Physics D, 18, 147-157.
https://doi.org/10.1142/S0218271809014303
[41]  Sarkar, S. and Mahanta, C.R. (2013) Holographic Dark Energy Model with Quintessence in Bianchi Type-I Space-Time. International Journal of Theoretical Physics, 52, 1482-1489.
https://doi.org/10.1007/s10773-012-1468-0
[42]  Sarkar, S. (2014) Holographic Dark Energy Model with Linearly Varying Deceleration Parameter and Generalized Chaplygin Gas Dark Energy Model in Bianchi Type-I Universe. Astrophysics and Space Science, 349, 985-993.
https://doi.org/10.1007/s10509-013-1684-y
[43]  Sarkar, S. (2014) Holographic Dark Energy with Linearly Varying Deceleration Parameter and Escaping Big Rip Singularity of the Bianchi Type-V Universe. Astrophysics and Space Science, 352, 859-866.
https://doi.org/10.1007/s10509-014-1920-0
[44]  Sarkar, S. (2014) Interacting Holographic Dark with Variable Deceleration Parameter and Tachyon Scalar Field Dark Energy Model in LRS Bianchi Type-II Universe. Astrophysics and Space Science, 350, 821-829.
https://doi.org/10.1007/s10509-014-1786-1
[45]  Adhav, K.S., Tayde, G.B. and Bansode, A.S. (2014) Interacting Dark Matter and Holographic Dark Energy in an Anisotropic Universe. Astrophysics and Space Science, 353, 249-257.
https://doi.org/10.1007/s10509-014-2015-7
[46]  Adhav, K.S., Munde, S.L., Tayade, G.B. and Bokey, V.D. (2015) Interacting Dark Matter and Holographic Dark Energy in Bianchi Type-V Universe. Astrophysics and Space Science, 359, 24.
https://doi.org/10.1007/s10509-015-2471-8
[47]  Kiran, M., et al. (2015) Bianchi Type-III Minimally Interacting Holographic Dark Energy Model with Linearly Varying Deceleration Parameter in Brans-Dicke Theory. Astrophysics and Space Science, 360, 54.
https://doi.org/10.1007/s10509-015-2563-5
[48]  Reddy, D.R.K., et al. (2015) LRS Bianchi Type-II Cosmological Model with a Linearly Varying Deceleration Parameter in f (R, T) Gravity. Prespacetime Journal, 6, 1100.
[49]  Sahni, V., Saini, T.D., Starobinsky, A.A. and Alam, U. (2003) Statefinder—A New Geometrical Diagnostic of Dark Energy. Journal of Experimental and Theoretical Physics Letters, 77, 201-206.
https://doi.org/10.1134/1.1574831
[50]  Alam, U., Sahni, V., Saini, T.D. and Starobinsky, A.A. (2003) Exploring the Expanding Universe and Dark Energy Using the Statefinder Diagnostic. Monthly Notices of the Royal Astronomical Society, 344, 1057-1074.
https://doi.org/10.1046/j.1365-8711.2003.06871.x
[51]  Zimdahl, W. and Pavon, D. (2004) Statefinder Parameters for Interacting Dark Energy. General Relativity and Gravitation, 36, 1483-1491.
https://doi.org/10.1023/B:GERG.0000022584.54115.9e
[52]  Zhang, X. (2005) Statefinder Diagnostic for Coupled Quintessence. Physics Letters B, 611, 1-7.
https://doi.org/10.1016/j.physletb.2005.02.022
[53]  Wetterich, C. (1988) Cosmology and the Fate of Dilatation Symmetry. Nuclear Physics B, 302, 668-696.
https://doi.org/10.1016/0550-3213(88)90193-9
[54]  Wetterich, C. (1995) The Cosmon Model for an Asymptotically Vanishing Time-Dependent Cosmological “Constant”. Astronomy & Astrophysics, 301, 321-328.
[55]  Billyard, A.P. and Coley, A.A. (2000) Interactions in Scalar Field Cosmology. Physical Review D, 61, Article ID: 083503. https://doi.org/10.1103/PhysRevD.61.083503
[56]  Horvat, R. (2004) Holography and a Variable Cosmological Constant. Physical Review D, 70, Article ID: 087301.
https://doi.org/10.1103/PhysRevD.70.087301
[57]  Cai, R.G. and Wang, A. (2005) Cosmology with Interaction between Phantom Dark Energy and Dark Matter and the Coincidence Problem. Journal of Cosmology and Astroparticle Physics, 2005, 002.
https://doi.org/10.1088/1475-7516/2005/03/002
[58]  Amendola, L., et al. (2007) Consequence of Dark Matter-Dark Energy Interaction on Cosmological Parameters Derived from Type Ia Supernova Data. Physical Review D, 75, Article ID: 083506.
https://doi.org/10.1103/PhysRevD.75.083506
[59]  Guo, Z.K., Ohta, N. and Tsujikawa, S. (2007) Probing the Coupling between Dark Components of the Universe. Physical Review D, 76, Article ID: 023508.
https://doi.org/10.1103/PhysRevD.76.023508
[60]  Guo, Z.K., Ohta, N. and Zhang, Y.Z. (2007) Parametrizations of the Dark Energy Density and Scalar Potentials. Modern Physics Letters A, 22, 883-890.
https://doi.org/10.1142/S0217732307022839
[61]  Thorne, K.S. (1967) Primordial Element Formation, Primordial Magnetic Fields, and Isotropy of the Universe. Astrophysical Journal, 148, 51-68.
https://doi.org/10.1086/149127
[62]  Kantowski, R. and Sachs, R.K. (1966) Some Spatially Homogeneous Anisotropic Relativistic Cosmological Models. Journal of Mathematical Physics, 7, 433.
https://doi.org/10.1063/1.1704952
[63]  Kristian, J. and Sachs, R.K. (1966) Observations in Cosmology. Astrophysical Journal, 143, 379.
https://doi.org/10.1086/148522
[64]  Collins, C.B., Glass, E.N. and Wilkinson, D.A. (1980) Exact Spatially Homogeneous Cosmologies. General Relativity and Gravitation, 12, 805-823.
https://doi.org/10.1007/BF00763057
[65]  Spergel, D.N., et al. (2003) First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameter. Astrophysical Journal Supplement Series, 148, 175-194.
[66]  Riess, A.G., Strolger, L.G., et al. (2004) Type Ia Supernovae Discoveries at from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. Astrophysical Journal, 607, 665-687.
[67]  Astier, P., Guy, J., Regnault, N., Pain, R., Aubourg, E., et al. (2006) The Supernova Legacy Survey: Measurement of ?M, ?Λ and from First Year Data Set. Astronomy and Astrophysics, 447, 31-48.
https://doi.org/10.1051/0004-6361:20054185
[68]  Eisenstein, D.J., Zehavi, I., Hogg, D.W., et al. (2005) Detection of Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous red Galaxies. Astrophysical Journal, 633, 560-574.

Full-Text


comments powered by Disqus