全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Thermodynamic Properties of Yttrium Based Cuprate Due to Electron-Cooper Pair Interaction Using BVT

DOI: 10.4236/oalib.1104880, PP. 1-14

Subject Areas: Chemical Engineering & Technology

Keywords: Energy Gap, Specific Heat, Entropy

Full-Text   Cite this paper   Add to My Lib

Abstract

Since the discovery of high temperature superconductivity (HTSC), there have been varied results concerning the high pairing energy in the unconventional superconductivity. In an attempt to unearth the mechanism behind the high pairing energy, we study a model in which an excited electron interacts with a Cooper pair. The interaction was studied earlier on using second quantization which depended on a wave function. We now use Bogoliubov-Valatini trans-formation (BVT) that is independent of the wave function to study the thermodynamic properties due to the interaction between an electron and a Cooper pair in a Yttrium based cuprate. The interaction energy increases with temperature and at ; we record the interaction energy of 2.173 meV and the specific heat of 4.669 J·mol·1·K·1. The entropy of this system is found to be 5.11 mJ·g·1·K·1. The Sommerfeld’s coefficient is maximum at where . It has also been observed, for the first time, that the thermodynamic quantities of YBCO123 are constant when temperature varies between 0 K and 18 K. Above 18 K, the thermodynamic quantities rise sharply. This observation has been attributed to the pairing of electrons in the singlet-s and singlet-p states.

Cite this paper

Mukubwa, A. W. , Odhiambo, J. O. and Makokha, J. W. (2018). Thermodynamic Properties of Yttrium Based Cuprate Due to Electron-Cooper Pair Interaction Using BVT. Open Access Library Journal, 5, e4880. doi: http://dx.doi.org/10.4236/oalib.1104880.

References

[1]  Bardeen, J., Cooper, L.N. and Schrieffer, J.R. (1957) The Microscopic Theory of Superconductivity. Physics Review, 108, Article ID: 1175.
https://doi.org/10.1103/PhysRev.108.1175
[2]  Wollman, D.A., Van Harlingen, D.J., Lee, W.C., Ginsberg, D.M. and Leggett, A.J. (1993) Experimental Determination of Superconducting Pairing State of YBCO from the Phace Coherence of YBCO-Pb dc SQUIDs. Physical Review Letter, 71, Article ID: 2134.
https://doi.org/10.1103/PhysRevLett.71.2134
[3]  Odhiambo, J.P.O. (2016) Thermodynamic Properties of High Temperature Superconducting Cuprates Due to Interactions between Cooper Pairs and Electrons. Ph.D. (Physics) Thesis, MasindeMuliro University of Science and Technology, Kakamega.
[4]  Tsuei, C. and Kirtley, R., (2002) d-wave Pairing Symmetry in Cuprate Superconductors—Fundamental Implications and Potential Applications. Physica C: Superconductivity, 367, 1-8.
https://doi.org/10.1016/S0921-4534(01)00976-5
[5]  Bednorz, G.J. and Muller, K.A. (1986) Possible High TC Superconductivity in the La-Ba-Cu-O System. Zeitschrift für Physik B Condensed Matter, 64, 189-193.
[6]  Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q. and Chu, C.W. (1987) Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure. Physical Review Letters, 58, Article ID: 908.
https://doi.org/10.1103/PhysRevLett.58.908
[7]  Maeda, H., Tanaka, Y., Fukutumi, M. and Asano, T. (1988) A New High TC Oxide Superconductor without a Rare Earth Element. Japanese Journal of Applied Physics, 27, L209-L210.
[8]  Schilling, A., Cantoni, M., Guo, J.D. and Ott, H.R. (1993) Superconductivity in Hg-Ba-Ca-Cu-O System. Nature, 363, 56-58.
https://doi.org/10.1038/363056a0
[9]  Ihara, H., Hirobayashi, M., Tanino, H., Tokiwa, K., Ozawa, H., Akahana, Y. and Ka-wamura, H. (1993) The Resistivity Measurements of HgBa2Ca2Cu3O8 x and HgBa2Ca3Cu4O10 x Superconductors under High Pres-sure. Japanese Journal of Applied Physics, 32, L1732-L1734.
https://doi.org/10.1143/JJAP.32.L1732
[10]  Onbasli, U., Wang, Y.T., Naziripour, A., Tello, R., Kiehl, W. and Hermann, A.M. (1996) Transport Properties of High-TC Mercury Cuprates. Physica Status Solidi (b), 194, 371-382.
https://doi.org/10.1002/pssb.2221940131
[11]  Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V. and Shylin, S.I. (2015) Conventional Superconductivity at 203 Kelvin at High Pressures in the Sulfur Hydride Sys-tem. Nature, 525, 73-76.
https://doi.org/10.1038/nature14964
[12]  Cilento, F., Conte, D., Coslovich, D., Peli, S., Nembrini, N., Mor, S., Banfi, F., Ferrini, G., Eisaki, H., Chan, M.K., Dorow, C.J., Veit, M.J., Greven, M., Marel, D., Comin, R., Damscelli, A., Retig, L., Bovoenspien, U., Capona, M., Gianetti, C. and Parmigiani, F. (2014) Photo-Enhanced Antinodal Conductivity in the Pseudogap State of TC Cuprates. Nature Communication, 5, Article No. 4353.
https://doi.org/10.1038/ncomms5353
[13]  Howald, L., Stilp, E., de Reotier, D.P., Yaouanc, A., Raymond, S., Piamonteze, C., Lapertot, G., Baines, C. and Keller, H. (2015) Evidence of Coexistence of Bulk Superconductivity and Itinerant Antiferromagnetism in the Heavy Fermion System CeCo (In1?xCdx)5. Scientific Report, 5, Article No. 12528.
https://doi.org/10.1038/srep12528
[14]  Odhiambo, J.O., Sakwa, T.W., Ayodo, Y.K. and Rapando, B.W. (2016) Thermody-namic Properties of Mercury Based Cuprate Due to Cooper Pair-Electron Interaction. Journal of Multidisciplinary Engineering Science and Technology, 3, 5241-5248.
[15]  Chubukov, A.V., Efremov, D.V. and Eremin, I. (2008) Magnetism, Superconductivity and Pairing Symmetry in Iron-Based Superconductors. Physics Review B, 78, Article ID: 134512.
https://doi.org/10.1103/PhysRevB.78.134512
[16]  Malik, M.A. and Malik, B.A. (2014) High Temperature Superconductivity: Materials, Mechanisms and Applications. Bulgarian Journal of Physics, 41, 305-314.
[17]  Dahm, T., Hinkov, V., Borisenko, V., Kordyuk, A.A., Zabolotny, V.B., Fink, J., Buchner, B., Scalapino, D.J., Hanke, W. and Keimer, B. (2009) Strength of the Spin-Fluctuation-Mediated Pairing Interaction in High-Temperature Superconductor. Nature Physics, 5, 217-221.
https://doi.org/10.1038/nphys1180
[18]  Kibe, H.E. (2015) Themodynamic Properties of Heavy Fermion Superconductors. M.Sc. (Physics) Thesis, MasindeMuliro University of Science and Technology, Kakamega.
[19]  Loram, J.W., Mirza, K.A., Cooper, J.R. and Liang, W.Y. (1993) Electronic Specific Heat of Yba2Ca3Cu3O6 x from 1.8 to 300K. Physics Review Letter, 71, 1740.
https://doi.org/10.1103/PhysRevLett.71.1740
[20]  Rapando, B.W., Khanna, K.M., Tonui, J.K., Sakwa, T.W., Muguro, K.M., Kibe, H., Ayodo, Y.K. and Sarai, A. (2015) The Dipole Mediated t-J Model for High-TC Superconductivity. International Journal of Physics and Mathematical Sciences, 5, 32-37.
[21]  Edwards, H.L., Markert, J.T. and de Lozanne, A.L. (1992) Energy Gap and Sur-face Structure of YBa2Cu3O7?xProbed by Scanning Tunneling Microscopy. Physics Review Letters, 69, 2967.
https://doi.org/10.1103/PhysRevLett.69.2967
[22]  Nakayama, K., Sato, T., Terashima, K., Matsu, H., Takahash, T., Kubota, M., Ono, K., Nishizaki, T., Takahashi, Y. and Kobayashi, N. (2007) Bulk and Surface Low-Energy Excitations in YBa2Cu3O7?δ Studied by High-Resolution Angle-Resolved Photoemission Spectroscopy. Physical Review B, 75, Article ID: 014513.
https://doi.org/10.1103/PhysRevB.75.014513
[23]  Mazur, D., Zasadzinski, J.F., Gray, K.E., Ma, Y.C., Wang, N.L. and Yan, S.L. (2006) Tunnelling Spectroscopy of Tl2Ba2CaCu2O8 Single Crystal and Thin Film.
http://arxiv.org/abs/cond-mat/0611636v1
[24]  Odhiambo, J.O. and Makokha, J.W. (2018) Specific Heat and Entropy of a Three-Electron Model in Bismuth Based Cuprate Superconductor. World Journal of Applied Physics, 3, 19-24.
[25]  Kibe, H.E., Sakwa, T.W. and Khanna, K.M. (2017) Specific Heat of the Integrated S-Wave and P-Wave Pairing in Uranium and Cerium Based Heavy Fermion Superconductors. International Journal of Physics and Mathematical Sciences, 7, 1-6.
[26]  Ketterson, B. and Song, S.N. (1999) Superconductivity. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139171090
[27]  Mumali, O.W., Ayodo, Y.K., Ndinya, B.O. and Odhiambo, J.O. (2016) Quantum Thermodynamics of a Strongly Interacting Bose-Fermi Mixture in a Three-Dimensional Anharmonic Potential. International Journal of Physics and Mathematical Sciences, 6, 41-50.
[28]  Sereni, J.G., Curlik, I., Giovannini, M., Strydom, A. and Reiffers, M. (2018) Physical Properties of the Very Heavy Fermion YbCu4Ni. Physical Review B, 98, Article ID: 094420.
https://doi.org/10.1103/PhysRevB.98.094420
[29]  Bessergeven, V.G., Kovalevskaya, Y.A., Naymov, V.N. and Frolova, G.I. (1995) Phonon Characteristics of YBa2Cu3O7?δ. Physica C, 245, 36-40.
https://doi.org/10.1016/0921-4534(95)00096-8
[30]  Shaviv, R., Westrum, E.F., Brown, R.J.C., Sayer, M., Yu, X. and Weir, R.D. (1990) The Heat Capacity and the Derived Thermophysical Properties of the High TC Superconductors YBa2Cu3O8?δ from 5.3 to 350 K. Journal of Chemical Physics, 92, 6794-6799.
https://doi.org/10.1063/1.458266
[31]  Andrei, M. (2004) Room Tem-perature Superconductivity. Cambridge International Sciences Publishing, Cambridge.
[32]  Kibe, H.E., Sakwa, T.W., Ayodo, Y.K., Rapando, B.W., Khanna, K.M. and Sarai, A. (2015) Thermodynamic Properties of Heavy Fermion Superconductors. International Journal of Physics and Mathematical Sciences, 5, 23-33.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413