全部 标题 作者
关键词 摘要


Physical Properties of Interaction Mediating Fields

DOI: 10.4236/oalib.1104738, PP. 1-16

Subject Areas: Quantum Mechanics

Keywords: Criteria for the Acceptability of a Quantum Theory, Quantum Particles, Quantum Fields, Interaction Mediating Fields

Full-Text   Cite this paper   Add to My Lib

Abstract

This work analyzes quantum fields that describe particles and quantum fields that mediate interaction between particles. Criteria for the acceptability of a quantum theory are explained and used. The main result states that no genuine particle mediates interaction between other particles. It is proved that Maxwellian radiation fields, namely photons, interact with electric charges but no genuine photon is involved in a bound state of atomic electrons or in the case where an electronic beam is scattered by an electrically charged target. The term virtual photons, which describes interaction mediating electromagnetic fields, indicates that the current literature implicitly agrees with this conclusion. Analogous results are obtained for the strong nuclear force, for the strong interactions and for the weak interactions.

Cite this paper

Comay, E. (2018). Physical Properties of Interaction Mediating Fields. Open Access Library Journal, 5, e4738. doi: http://dx.doi.org/10.4236/oalib.1104738.

References

[1]  Landau, L.D. and Lifshitz, E.M. (2005) The Classical Theory of Fields. Elsevier, Amsterdam.
[2]  Schiff, L.I. (1955) Quantum Mechanics. McGraw-Hill, New York.
[3]  Jackson, J.D. (1975) Classical Electrodynamics. John Wiley, New York.
[4]  Bjorken, J.D. and Drell, S.D. (1964) Relativistic Quantum Mechanics. McGraw-Hill, New York.
[5]  Weinberg, S. (1995) The Quantum Theory of Fields, Vol. I. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139644167
[6]  Griffiths, D. (2008) Introduction to Elementary Particles. 2nd Edition, Wiley-VCH, Weinheim.
[7]  Wigner, E. (1939) On Unitary Representations of the Inhomogeneous Lorentz Group. Annals of Mathematics, 40, 149.
https://doi.org/10.2307/1968551
[8]  Schweber, S.S. (1964) An Introduction to Relativistic Quantum Field Theory. Harper & Row, New York, 44-53.
[9]  Sternberg, S. (1994) Group Theory and Physics. Cambridge University Press, Cambridge, 143-150.
[10]  Peskin, M.E. and Schroeder, D.V. (1995) An Introduction to Quantum Field Theory. Addison-Wesley, Reading Mass.
[11]  Messiah, A. (1967) Quantum Mechanics, V. 1. North Holland, Amsterdam.
[12]  Rohrlich, F. (2007) Classical Charged Particle. World Scientific, New Jersey.
https://doi.org/10.1142/6220
[13]  Bjorken, J.D. and Drell, S.D. (1965) Relativistic Quantum Fields. McGraw-Hill, New York.
[14]  Patrignani, C., et al. (2016) Particle Data Group. Chinese Physics C, 40, 100001.
http://pdg.lbl.gov/
[15]  https://en.wikipedia.org/wiki/Andromeda_Galaxy
[16]  Perkins, D.H. (1987) Introduction to High Energy Physics. Addison-Wesley, Menlo Park.
[17]  Bethe, H.A. and Salpeter, E.E. (1957) Quantum Mechanics of One- and Two-Electron Atoms. Springer, Berlin.
[18]  Landau, L.D. and Lifshitz, E.M. (1959) Quantum Mechanics. Pergamon, London.
[19]  Thomson, M. (2013) Modern Particle Physics. University Press, Cambridge.
https://doi.org/10.1017/CBO9781139525367
[20]  Wong, S.S.M. (1998) Introductory Nuclear Physics. Wiley, New York.
https://doi.org/10.1002/9783527617906
[21]  Berestetskii, V.B., Lifshitz, E.M. and Pitaevskii, L.P. (2008) Quantum Electrodynamics. 2nd Edition, Elsevier, Oxford.
[22]  Halzen, F. and Martin, A.D. (1984) Quarks and Leptons. Wiley, New York.
[23]  Fritzsch, H. (2012) The History of QCD. CERN Courier, Sep. 27.
http://cerncourier.com/cws/article/cern/50796
[24]  de-Shalit, A. and Talmi, I. (1963) Nuclear Shell Theory. Aca-demic Press, New York.
[25]  Bauer, T.H., Spital, R.D., Yennie, D.R. and Pipkin, F.M. (1978) The Hadronic Properties of the Photon in High-Energy Interactions. Reviews of Modern Physics, 50, 261.
https://doi.org/10.1103/RevModPhys.50.261
[26]  Weise, W. (1974) Hadronic Aspects of Photon-Nucleus Interac-tions. Physics Reports, 13, 53.
[27]  http://pdg.lbl.gov/2012/reviews/rpp2012-rev-cross-section-plots.pdf
[28]  Comay, E. (2012) The Regular Charge-Monopole Theory and Strong Interactions. Electronic Journal of Theoretical Physics, 9, 93-118.
http://www.ejtp.com/articles/ejtpv9i26p93.pdf
[29]  Comay, E. (2004) A Regular Theory of Magnetic Monopoles and Its Implications. In: Chubykalo, A., Onoochin, V., Espinoza, A. and Smirnov-Rueda, R., Eds., Has the Last Word Been Said on Classical Electrodynamics, Rinton Press, Paramus, 82-103.
[30]  Comay, O. (2014) Science or Fiction? The Phony Side of Particle Physics. Samuel Wachtman’s Sons, Monterey.
[31]  Weinberg, S. (1995) The Quantum Theory of Fields. Vol. II, Cambridge University Press, Cambridge.
[32]  Landau, L.D. and Lifshitz, E.M. (1959) Quantum Mechanics. Pergamon, London.
[33]  Comay, E. (2016) A Theory of Weak Interaction Dynamics. Open Access Library Journal, 3, 1-10.
https://www.scirp.org/journal/PaperInformation.aspx?PaperID=72788
[34]  Frauenfelder, H. and Henley, E.M. (1991) Subatomic Physics. Prentice Hall, Englewood Cliffs, 296-304.
[35]  https://en.wikipedia.org/wiki/Fundamental_interaction
[36]  Haken, H. and Wolf, H.C. (1995) Molecular Physics and Elements of Quantum Chemistry. Springer, Berlin.
https://doi.org/10.1007/978-3-662-03075-2
[37]  https://en.wikibooks.org/wiki/Molecular_Simulation/
The_Lennard-Jones_Potential
[38]  Ishii, N., Aoki, S. and Hatsuda, T. (2007) Nuclear Force from Lattice QCD. Physical Review Letters, 99, Article ID: 022001.
https://doi.org/10.1103/PhysRevLett.99.022001
[39]  Wilczek, F. (2007) Particle Physics: Hard-Core Revelations. Nature, 445, 156-157.
https://doi.org/10.1038/445156a

Full-Text


comments powered by Disqus