All Title Author
Keywords Abstract


Gravitational Wave as Symmetry Breaking within a New Model: An Overview

DOI: 10.4236/oalib.1104549, PP. 1-4

Subject Areas: Theoretical Physics

Keywords: Gravitational Waves, 2nd Fundamental Tensor, Tensorial Curl, Local and Global Invariance

Full-Text   Cite this paper   Add to My Lib

Abstract

I outline a new hypothetical approach issuing a second gravitational equation in the scope of a promising model tackling the gravitational wave problem. This wave equation for graviton is framed in the endeavour to bridge the puzzling missing link to allow for quantum scale physics in a unifying gravity theory, through a new coupling constant S: thus wave is regarded as a symmetry breaking of general covariance of field equations through contraction of Riemann tensor by a constant tensor. That also allows an inertial mass to be assigned to the graviton (OE-25 eV/c2). This extension of General Relativity stems from self-evident considerations on the differential conditions of compatibility involving the two fundamental tensors on the curvature of the Space-Time continuum. Some considerations about last detected events are broached on the gauging of S constant, bringing forth a value that differs of two orders of magnitude with respect to the fitting of known binary star systems, unless source parameters are revised.

Cite this paper

Antonelli, S. (2018). Gravitational Wave as Symmetry Breaking within a New Model: An Overview. Open Access Library Journal, 5, e4549. doi: http://dx.doi.org/10.4236/oalib.1104549.

References

[1]  LIGO-VIRGO coll. (2017) GW170814: A Three-Detector Observation of Gravitational Waves from a BBH Coalescence. Preprint arXiv:gr-qc/1709.09660.
[2]  Abbott, B.P., et al. (2016) Observation of Gravitational Waves from BBH Merger. Physical Review Letters, 116, 061102.
[3]  LIGO coll. (2016) GW151226: Observation of Gravitational Waves from a 22 Solar-Mass BBH Coalescence. Physical Review Letters, 116, 241103.
[4]  Abbott, B.P., et al. (2017) GW170104: Observation of a 50-Solar-Mass BBH Coalescence. Physical Review Letters, 118, 221101.
[5]  Lovelace, G., et al. (2016) Modeling the Source of GW150914 with Targeted Numerical-Relativity Simulations. Classical and Quantum Gravity, 33, 244002. Preprint arXiv:gr-qc/1607.05377.
[6]  LIGO coll. (2016) Test of GR with GW150914. Preprintar Xiv:gr-qc/1602.03841.
[7]  DeLaurentis, M., et al. (2016) Constraining Alternative Theories of Gravity Using GW. Preprint arXiv:gr-qc/1611.05766.
[8]  Tailherer, M. (2007) A Critical Reading on the Theory of Gravitational Wave Propagation. Journal of Physical & Natural Sciences, 1, 1.
[9]  Antonelli, S. (2014) Outstanding Outcomes from a Recent Theory of Gravity. International Journal of Physics, 2, 267-276.
https://doi.org/10.12691/ijp-2-6-10
[10]  Anderson, J.L. (1967) Principles of Relativity Physics. Academic Press, New York.
[11]  Norton, J.D. (1993) General Covariance and the Foundations of General Relativity: Eight Decades of Dispute. Reports on Progress in Physics, 56, 791-458.
https://www.pitt.edu/~jdnorton/papers/decades.pdf
[12]  Cooperstock, F.I. (2015) The Essence of Gravitational Waves and Energy. International Journal of Modern Physics D, 24, 1543005.
https://doi.org/10.1142/S0218271815430051
[13]  Weyl, H. (1988) Raum-Zeit-Materie. Springer, Berlin, p. 268, quoted in Loinger. A. (2007) GW’s towards Fundamental Principles of GR.
[14]  Loinger, A. and Marsico T. (2016) Remarks on Numerical Relativity, Geodesic Motions, Binary Neutron Star Evolution. Preprint arXiv:gen-ph/1211.6152.
[15]  Loinger, A. and Marsico, T. (2010) All Relativistic Motions Can Be Relativistically Described. arXiv:gen-ph/1006.3844.
[16]  Ferrarese, G. (2001) Lezioni di Relatività Generale. Pitagora Eds., Bologna, Ch. 10.4, p. 333.
[17]  Levi-Civita, T. (1930) Caratteristiche e bicaratteristiche delle equazioni gravitazionali di Einstein. Rendiconti Accademia dei Lincei, 6, 3-11, 113-121.
[18]  Maggiore, M. (2008) Gravitational Waves. Vol. 1, OUP, Oxford, §5.3.5.
[19]  Blanchet, L. (2010) Post-Newtonian Theory and the Two-Body Problem. Preprint arXiv:gr-qc/0907.3596 appeared in Mass and Motion in General Relativity, Proceedings of the C.N.R.S. School in Orleans, France edited by Springer, Berlin.
[20]  Antonelli, S. (2016) Appraisal of a New Gravitational Constant. The International Journal of Physics, 3, 139-149.
[21]  Padmanabham, T. (2008) From Gravitons to Gravity: Myths and Reality. International Journal of Modern Physics D, 17, 367.
[22]  Weisstein, E.W. (1998) Peterson-Mainardi-Codazzi Equations. From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/Peterson-Mainardi-
CodazziEquations.html
[23]  Do Carmo, M.P. (1976) Differential Geometry of Curves and Surfaces. Prentice-Hall, New York, p. 235.
[24]  Ferrarese, G. (2001) Lezioni di Relatività Generale. Pitagora Eds., Bologna, Ch. 2.13, p. 57.
[25]  Do Carmo, M.P. (1976) Differential Geometry of Curves and Surfaces. Prentice-Hall, New York, sec. 3.3, p. 145.
[26]  Ferrarese, G. and Stazi, L. (1989) Lezioni di Meccanica Razionale. Vol 2, Pitagora Eds., Bologna, ch. VIII, §1.8, p. 593.
[27]  Maggiore, M. (2008) Gravitational Waves. Vol. 1, OUP, Oxford, sec. 3.6, Prb.3.2, p. 159.
[28]  Maggiore, M. (2008) Gravitational Waves. Vol. 1, OUP, Oxford, sec. 6.2.3.

Full-Text


comments powered by Disqus