全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Electronic Properties of Mo(1﹣x)W(x)S2-Ni Grown over Graphene

DOI: 10.4236/oalib.1104335, PP. 1-12

Subject Areas: Nanometer Materials

Keywords: MoS2 Clusters, Graphene, Extended Hückel, Energy Bands, TDOS

Full-Text   Cite this paper   Add to My Lib

Abstract

A proposal of the theoretical adsorption of 2H-Mo(1﹣x)W(x)S2-Ni over graphene using extended Hückel tight-binding method was investigated. It is well known that a theoretical prior investigation is well accepted by the scientific community due to that provides information regarding electronic as well as magnetic properties of the material under investigation. Energy bands for 2H-Mo(1x)W(x)S2-Ni indicate a soft metal, while graphene with oxygen vacancies and 2H-Mo(1x)W(x)S2-Ni yields indication of a semiconductor behavior with a measured energy gap Eg~0.98 eV between the Valence and Conduction bands respectively. In addition, an electronic charge transfer from 2H-Mo(1x)W(x)S2-Ni toward graphene is presented. The new hybrid system presents high dispersion of 2H-Mo(1x)W(x)S2-Ni on graphene. Total and partial Density of States yield indication that an enhancement of the contribution to the total DOS, in the vicinity of the Fermi level for the structure over graphene has occurred, when compared to 2H-MoS2 original. These results could indicate that the new proposed system could be used as a catalyst for HDS in the petrochemical industry.

Cite this paper

Galvan, D. H. , Antunez-Garcia, J. , Fuentes, S. and Shelyapina, M. (2018). Electronic Properties of Mo(1﹣x)W(x)S2-Ni Grown over Graphene. Open Access Library Journal, 5, e4335. doi: http://dx.doi.org/10.4236/oalib.1104335.

References

[1]  Eknapakul, T., King, P.D.C., Asakawa, M., Buaphet, P., He, R.-H., Mo, S.-K., Takagi, H., Shen, K.M., Baumberger, F., Sasagawa, T.T., Jungthawan, S. and Meevasana, W. (2014) Electronic Structure of Quasi-Freestanding MoS2 Monolayer. Nano Letters, 14, 1312-1316. https://doi.org/10.1021/nl4042824
[2]  Gong, Y., Liu, Z., Lupini, A.R., Shi, G., Lin, J., Najmaei, S., Lin, Z., Elías, A.L., Berkdemír, A., You, G., Terrones, H., Terrones, M., Vajtai, R., Pantelides, S.P., Pennycook, S.J., Lou, J., Zhou, W. and Ajayan, P.M. (2014) Band Gap Engineering and Layer-by-Layer Mapping, of Selenium-Doped Molybdenum Disulfide. Nano Letters, 14, 442-449. https://doi.org/10.1021/nl4032296
[3]  Castellanos-Gomez, A., Poot, M., Steel, G.A., Van der Zant, H.S.J., Agrait, N. and Rubio-Bollinger, G. (2012) Elastic Properties of Freely Expanded MoS2 Nanosheet. Advanced Materials, 24, 772-775. https://doi.org/10.1002/adma.201103965
[4]  Yadgarov, L., Choi, C.L., Sedova, A., Cohen, A., Rosentsveig, R., Bar-Elli, O., Oron, D., Dai, H. and Tenne, R. (2014) Dependence of the Absorption and Optical Surface Plasmon Scattering of MoS2 Nanoparticles on Aspect Ratio, Size and Media. ACS Nano, 8, 3575-3583. https://doi.org/10.1021/nn5000354
[5]  Yan, Y., Xia, B., Xu, Z. and Wang, X. (2014) Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction. ACS Catalysis, 4, 1693-1705.
[6]  Chianelli, R.R., Siadati, M.H., Perez de la Rosa, M., Berhault, G., Wilcoxon, J.P., Bearden Jr., R. and Abrams, B.L. (2006) Catalytic Properties of Single Layers of Transition Metal Sulfides Catalytic Materials. Catalysis Reviews, 48, 1-41. https://doi.org/10.1080/01614940500439776
[7]  Donath, E.E. (1982) History of Catalysis in Coal Liquafactions. In: Anderson, J.R. and Boudart, M., Eds., Catalysis, Vol. 3, Springer, Berlin, p. 1-37.
[8]  Song, C. (2003) An Overview of New Approach to Deep Desulfurization for Ultra-Clean Gasoline, Disel Fuel and Jet Fuel. Catalysis Today, 86, 211-263. https://doi.org/10.1016/S0920-5861(03)00412-7
[9]  Nishimura, S. (2001) Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. John Wiley & Sons, New York.
[10]  Wei, X.-L., Zhang, H., Guo, G.-C., Li, X.-B., Lau, W.-M. and Lieu, L.-M. (2014) Modulating the Atomic and Electronic Structures through Alloying and Heterostructure of Single-Layer MoS2. Journal of Materials Chemistry, A2, 2101-2109. https://doi.org/10.1039/C3TA13659K
[11]  Soled, S.L., Miseo, S., Krikak, R., Vroman, H., Ho, T.H. and Riley, K.L. (2001) US Patent 6 299760 [1B], to Exxon Research and Engineering Company.
[12]  Hein, J., Gutierrez, O.Y., Schachtl, E., Xu, P., Browning, N.D., Jentys, A. and Lercher, J.A. (2015) Distribution of Metal Cations in Ni-Mo-W Sulfide Catalysts. ChemCatChem Catalysis, 7, 3692-3704. https://doi.org/10.1002/cctc.201500788
[13]  Olivas, A., Antúnez-García, J., Fuentes, S. and Galvan, D.H. (2014) Electronic Properties of Unsupported Trimetallic Catalysts. Catalysis Today, 220-222, 106-112. https://doi.org/10.1016/j.cattod.2013.09.055
[14]  Zheng, X., Xu, J., Yan, K., Wang, H., Wang, Z. and Yang, S. (2014) Space-Confined Growth of MoS2 Nanosheets within Graphite: The Layered Hybrid of MoS2 and Graphene as an Active Catalyst for Hydrogen Evolution Reaction. Chemistry of Materials, 26, 2344-2353. https://doi.org/10.1021/cm500347r
[15]  Zhao, X., Zhu, H. and Yang, X. (2014) Amorphous Carbon Supported MoS2 Nanosheets as Effective Catalysts for Electrocatalytic Hydrogen Evolution. Nanoscale, 6, 10680-10685. https://doi.org/10.1039/C4NR01885K
[16]  Castro-Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K. (2009) The Properties of Graphene. Reviews of Modern Physics, 81, 109-162. https://doi.org/10.1103/RevModPhys.81.109
[17]  Pletikosic, I., Kralj, M., Pervan, P., Brako, R., Coraux, J., N’Diaye, A.T., Busse, C. and Michely, T. (2009) Dirac Cones and Minigaps for Graphene on Ir (111). Physical Review Letters, 102, Article ID: 056808. https://doi.org/10.1103/PhysRevLett.102.056808
[18]  Giovannetti, G., Khomyakov, P.A., Brocks, G., Kelly, P.J. and van den Brink, J. (2007) Substrate-Induced Band Gap in Graphene on Boron Nitride: An ab Initio Density Functional Calculations. Physical Review B, 76, Article ID: 073103.
[19]  Khomyakov, P.A., Giovannetti, G., Rusu, P.C., Brocks, G., van der Brink, J. and Kelly, P.J. (2009) First-Principles Study of the Interaction and Charge Transfer between Graphene and Metals. Physical Review B, 79, Article ID: 195425. https://doi.org/10.1103/PhysRevB.79.195425
[20]  Wangbo, M.-H. and Hoffmann, R. (1978) The Band Structure of the Tetracyanoplatinate Chain. Journal of the American Chemical Society, 100, 6093-6098. https://doi.org/10.1021/ja00487a020
[21]  Hoffmann, R. (1963) An Extended Hückel Theory. I. Hydrocarbons. The Journal of Chemical Physics, 39, 1397-1412. https://doi.org/10.1063/1.1734456
[22]  Glassey, W.V., Popoian, G.A. and Hoffmann, R. (1999) Total Energy Partitioning with One-Electron Formalism: A Hamilton Population Study of Surface-CO Interaction in the c(2 × 2)-CO/Ni(100) Chemisorption System. The Journal of Chemical Physics, 111, 893-910. https://doi.org/10.1063/1.479200
[23]  Galvan, D.H. (1998) Extended Hückel Calculations on Cubic Boron Nitride and Diamond. Journal of Materials Science Letters, 17, 805-810. https://doi.org/10.1023/A:1006630320896
[24]  Hallmark, V.M., Chiang, S. and Predicting, S. (1995) STM Images of Molecular Adsorbates. Surface Science, 329, 255-268. https://doi.org/10.1016/0039-6028(95)00047-X
[25]  Eisenberg, R. and Gray, H.B. (2011) Noninnocence in Metal Complexes: A Dithiolene Dawn. Inorganic Chemistry, 50, 9741-9751. https://doi.org/10.1021/ic2011748
[26]  Ghosh, R.K. and Mahapatra, S. (2013) Direct Band-to-Band Tunneling in Reversed Biased MoS2 Nanoribbon p-n Junctions. IEEE Transactions on Electron Devices, 60, 274-279. https://doi.org/10.1109/TED.2012.2226729
[27]  Galvan, D.H., Fuentes-Moyado, S., Estrada-Cruz, J.F.D.R. and Shelyapina, M.G. (2016) Electronic Properties of 1H-MoS2 Clusters Grown on Graphene Oxide. International Journal of Nanotechnology, 13, 60-72. https://doi.org/10.1504/IJNT.2016.074523
[28]  Fleischauer, P.D., Lince, R., Bertrand, P.A. and Bauer, R. (1989) Electronic Structure and Lubrication Properties of Molybdenum Disulfide: A Quantitative Molecular Orbital Approach. Langmuir, 5, 1009-1015. https://doi.org/10.1021/la00088a022
[29]  Alvarez, S. (1993) Tables of Parameters for Extended Hückel Calculations. Universitat de Barcelona, Barcelona.
[30]  Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Gregorieva, I.V. and Firzov, A.A. (2004) Electrical Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. https://doi.org/10.1126/science.1102896
[31]  Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Gregorieva, I.V., Dubonos, S.V. and Firsov, A.A. (2005) Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature, 438, 197-200. https://doi.org/10.1038/nature04233
[32]  Mattheiss, L.F. (1973) Band Structure of Transition-Metal-Dichalcogenides Layered Compounds. Physical Review B, 8, 3719-3740. https://doi.org/10.1103/PhysRevB.8.3719
[33]  Grand, A.J., Griffiths, T.M., Pitt, G.D. and Yoffe, A.D. (1975) The Electrical Propertries and the Magnitude of the Indirect Gap in the Semiconducting Transition Metal Dichalcogenide Layer Crystals. Journal of Physics C: Solid State Physics, 8, L17-L23. https://doi.org/10.1088/0022-3719/8/1/004
[34]  Estrada-Cruz, J., Fuentes-Moyado, S. and Galvan, D.H. (2015) Energy Bands of the 1H-MoS2 over Reduced Graphene Oxide. Materials Today: Proceedings, 2, 108-112. https://doi.org/10.1016/j.matpr.2015.04.017
[35]  del Rosario Estrada-Cruz, J.F. (2014) Master in Science Disertation, Propiedades electronicas de nano-cumulos de 1H-MoS2 crecido sobre oxido de grafeno, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, febrero 6.
[36]  Bollinger, M.V., Lauritsen, J.V., Jacobsen, J.W., Norskov, J.K., Helveg, S. and Besenbacher, F. (2001) One-Dimensional Metallic Edge States in MoS2. Physical Review Letters, 87, Article ID: 196803. https://doi.org/10.1103/PhysRevLett.87.196803
[37]  Byskov, L.S., Norskov, J.K., Clausen, B.S. and Topsoe, H. (2000) Edge Termination of MoS2 and CoMoS Catalyst Particles. Catalysis Letters, 64, 95-99. https://doi.org/10.1023/A:1019063709813
[38]  Helveg, S., Lauritsen, J.V., Laegsgaard, E., Stensgaard, I., Norskov, J.K., Clausen, B.S., Topsoe, H. and Besenbacher, F. (2000) Atomic-Scale Structure of Single-Layer MoS2 Nanoclusters. Physical Review Letters, 84, 951-954. https://doi.org/10.1103/PhysRevLett.84.951
[39]  Carlsson, A., Brorson, M. and Topsoe, H. (2004) Morphology of WS2 Nanoclusters in WS2/C Hydrodesulfurization Catalysts Revealed by High-Angle Annular Dark-Field Transmission Electron Microscopy (HAADF-STEM) Imaging. Journal of Catalysis, 227, 530-536. https://doi.org/10.1016/j.jcat.2004.08.031
[40]  Lauritsen, J.V., Nyberg, M., Norskov, J.K., Clausen, B.S., Topsoe, H., Laegsgaard, E. and Besenbacher, F. (2004) Hydrodesulfurization Reaction Pathways on MoS, Nanoclusters Revealed by Scanning Tunneling Microscopy. Journal of Catalysis, 224, 94-106. https://doi.org/10.1016/j.jcat.2004.02.009
[41]  Camacho-Bragado, G.A., Olivas, A., fuentes, S., Galvan, D.H. and José-Yacaman, M. (2005) Structure and Catalytic Properties of Nanostructured Molybdenum Sulfides. Journal of Catalysis, 234, 182-190.
[42]  Wolfsberg, M.W. and Helmholtz, L. (1952) The Spectra and Atomic Structure of the Tetrahedral Ions MnO4, CrO4, and ClO4. The Journal of Chemical Physics, 20, 837-848. https://doi.org/10.1063/1.1700580

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413