全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Statistical, Data-Driven Approach to Forecasting Production from Liquid-Rich Shale Reservoirs

DOI: 10.4236/oalib.1104053, PP. 1-18

Subject Areas: Chemical Engineering & Technology, Mineral Engineering

Keywords: Principal Components, Liquid-Rich Shale, Unconventional Resources, Production Forecasting, Pattern Recognition, Decline Curve Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract

The oil and gas industry needs fast and simple techniques of forecasting oil and gas production. Forecasting production from unconventional, low permeability reservoirs is particularly challenging. As a contribution to the continuing efforts of finding solutions to this problem, this paper studies the use of a statistical, data-driven method of forecasting production from liquid-rich shale (LRS) reservoirs called the Principal Components Methodology (PCM). In this study, production of five different highly volatile and near-critical oil wells was simulated for 30 years with the aid of a commercial compositional simulator. Principal Components Methodology (PCM) was applied to production data from the representative wells by using Singular Value Decomposition (SVD) to calculate the principal components (PCs). These principal components were then used to forecast oil and solution gas production from the near-critical oil wells with production histories ranging from 0.5 to 2 years, and the results were compared to simulated data and the Modified Arps’ decline model forecasts. Application of the PCM to field data is also included in this work. Various factors ranging from ultra-low permeability to multi-phase flow effects have plagued the mission of forecasting production from liquid rich shale reservoirs. Traditional decline curve analysis (DCA) methods have not been completely adequate for estimating production from shale reservoirs. The PCM method enables us to obtain the production decline structure that best captures the variance in the data from the representative wells considered. This technique eliminates the need for parameters like the hyperbolic decline exponents (b values) and the task of switching from one DCA model to another. Also, production forecasting can be done without necessarily using diagnostic plots. With PCM, production could be forecasted from liquid-rich shale reservoirs with reasonable certainty. This study presents an innovative and simple method of forecasting production from liquid-rich shale (LRS) reservoirs. It provides fresh insights into how estimating production can be done in a different way.

Cite this paper

Makinde, I. (2017). Statistical, Data-Driven Approach to Forecasting Production from Liquid-Rich Shale Reservoirs. Open Access Library Journal, 4, e4053. doi: http://dx.doi.org/10.4236/oalib.1104053.

References

[1]  Arps, J.J. (1945) Analysis of Decline Curves. AIME, 160, 228-247.
https://doi.org/10.2118/945228-G
[2]  Duong, A.N. (2011) Rate-Decline Analysis for Fracture-Dominated Shale Reservoirs. SPE Reservoir Evaluation & Engineering, 14, SPE 137748-PA.
[3]  Valko, P.P. and Lee, W.J. (2010) A Better Way to Forecast Production from Unconventional Gas Wells. The SPE Annual Technical Conference and Exhibition, Florence, 19-22 September 2010, SPE Paper 134231
[4]  Ilk, D., Rushing, J.A., Perego, A.D. and Blasingame, T.A. (2008) Exponential vs. Hyperbolic Decline in Tight Gas Sands: Understanding the Origin and Im-plications for Reserve Estimates Using Arps’ Decline Curves. The SPE Annual Technical Conference and Exhibition, Denver, 21-24 September 2008, SPE Paper 116731.
[5]  Yu, S. and Miocevic, D.J. (2013) An Improved Method to Obtain Reliable Production and EUR Prediction for Wells with Short Production History in Tight/Shale Reservoirs. The Unconventional Resource Technology Conference, Denver, 12-14 August 2013, SPE Paper 168684.
[6]  Makinde, I. and Lee, W.J. (2017) Forecasting Production of Liquid Rich Shale (LRS) Reservoirs Using Simple Models. Journal of Petroleum Science and Engineering, 157, 461-481.
https://doi.org/10.1016/j.petrol.2017.07.049
[7]  Ozkan, E., Brown, M., Raghavan, R. and Kazemi, H. (2011) Comparison of Fractured-Horizontal-Well Performance in Tight Sand and Shale Reservoirs. SPE Reservoir Evaluation & Engineering, 14, SPE 121290-PA.
[8]  Stalgorova, E. and Mattar, L. (2013) Analytical Model for Unconventional Multifractured Composite Systems. SPE Reservoir Evaluation & Engineering, 16, SPE 162516-PA.
[9]  Clarkson, C.R. and Qanbari, F. (2015) A Semianalytical Forecasting Method for Unconventional Gas and Light Oil Wells: A Hybrid Approach for Addressing the Limitations of Existing Empirical and Analytical Methods. SPE Reservoir Evaluation & Engineering, 18, SPE 170767-PA.
[10]  Makinde, I. and Lee, W.J. (2016) A New Approach to Forecasting Production from Liquid Rich Shale Reservoirs. The Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 7-10 November 2016, SPE Paper 183021.
https://doi.org/10.2118/183021-MS
[11]  Makinde, I. and Lee, W.J. (2016) Statistical Approach to Forecasting Gas-Oil Ratios and Solution Gas Production from Shale Volatile Oil Reservoirs. The Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 7-10 November 2016, SPE Paper 182933.
https://doi.org/10.2118/182933-MS
[12]  Bhattacharya, S. and Nikolaou, M. (2013) Analysis of Production History for Unconventional Gas Reservoirs with Statistical Methods. SPE Journal, SPE 147658.
[13]  Makinde, I. and Lee, W.J. (2016) Production Forecasting in Shale Volatile Oil Reservoirs Using Reservoir Simulation, Empirical and Analytical Methods. The Unconventional Resources Technology Conference, San Antonio, 1-3 August 2016, URTeC 2429922.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413