全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Structural and Optical Properties Evolution of Au/SiO2 Nanocomposite Films: The Influence of Substrate Temperature and Thermal Annealing

DOI: 10.4236/oalib.1103909, PP. 1-15

Subject Areas: Composite Material, Material Experiment

Keywords: Gold Nanoparticles, Sputtering, Substrate and Annealing Temperature, Size, SPR

Full-Text   Cite this paper   Add to My Lib

Abstract

Au/SiO2 nanocomposite films, studied in this work, were prepared by RF-magnetron sputtering technique on glass substrate at room temperature under two different substrate temperatures (Ts), and subsequent heat treatment. For the deposited sample at TS = 25℃, no apparent surface plasmon resonance peak could be observed. After annealing, optical absorption spectrum of the Au/SiO2 thin films showed a broad absorption band around 500 nm relating to gold nanoparticles without any modification in the position of the SPR and the size of particles. For the series deposited at TS = 400℃, the surface plasmon resonance (SPR) was found at 500 nm. After heat treatment it’s redshift from 500 nm to 503 nm, while the size increases from 2.01 nm to 2.3 nm. We have also shown that, as the AuNPs are embedded in silica films, the small nanoparticles size have a slightly larger expansion coefficient than for bigger one.

Cite this paper

Belahmar, A. , Chouiyakh, A. and Fahoume, M. (2017). Structural and Optical Properties Evolution of Au/SiO2 Nanocomposite Films: The Influence of Substrate Temperature and Thermal Annealing. Open Access Library Journal, 4, e3909. doi: http://dx.doi.org/10.4236/oalib.1103909.

References

[1]  Alvarez, M.M., Khoury, J.T., Schaaff, T.G., Shafigullin, M.N., Vezmar, I. and Whetten, R.L. (1997) Optical Absorption Spectra of Nanocrystal Gold Molecules. The Journal of Physical Chemistry B, 101, 3706-3712.
https://doi.org/10.1021/jp962922n
[2]  Link, S. and El-Sayed, M.A. (1999) Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. The Journal of Physical Chemistry B, 103, 8410-8426
https://doi.org/10.1021/jp9917648
[3]  Moskovits, M. (1985) Surface-Enhanced Spectroscopy. Reviews of Modern Physics, 57, 783-826.
https://doi.org/10.1103/RevModPhys.57.783
[4]  Metiu, H. and Das, P. (1984) The Electromagnetic Theory of Surface Enhanced Spectroscopy. Annual Review of Physical Chemistry, 35, 507-536.
https://doi.org/10.1146/annurev.pc.35.100184.002451
[5]  Kelly, K.L., Coronado, E., Zhao, L.L. and Schatz, G.C. (2003) The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 107, 668-677.
https://doi.org/10.1021/jp026731y
[6]  Kreibig, U. and Fragstein, C.V. (1969) The Limitation of Electron Mean Free Path in Small Silver Particles. Zeitschrift für Physik, 224, 307-323.
https://doi.org/10.1007/BF01393059
[7]  Kreibig, U. and Genzel, L. (1985) Optical Absorption of Small Metallic Particles. Surface Sciences, 156, 678-700.
https://doi.org/10.1016/0039-6028(85)90239-0
[8]  Noguez, C. (2007) Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment. The Journal of Physical Chemistry C, 111, 3806-3819. https://doi.org/10.1021/jp066539m
[9]  Kreibig, U. and Vollmer, M. (1995) Optical Properties of Metal Clusters. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-09109-8
[10]  Doremus, R.H. (1964) Optical Properties of Small Gold Particles. The Journal of Chemical Physics, 40, 2389-396.
https://doi.org/10.1063/1.1725519
[11]  Doremus, R.H. (1965) Optical Properties of Small Silver Particles. The Journal of Chemical Physics, 42, 414-417.
https://doi.org/10.1063/1.1695709
[12]  Mulvaney, P. (2001) Metal Nanoparticles: Double Layers, Optical Properties, and Electrochemistry, in Nanoscale Materials in Chemistry. John Wiley & Sons, Inc., New York.
https://doi.org/10.1002/0471220620.ch5
[13]  Link, S. and El-Sayed, M.A. (1999) Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. The Journal of Physical Chemistry B, 103, 4212-4217.
https://doi.org/10.1021/jp984796o
[14]  Takahiro, K., Oizumi, S., Morimoto, K., Kawatsura, K., Isshiki, T., Nishio, K., Nagata, S., Yamamoto, S., Narumi, K. and Naramoto, H. (2009) Application of X-Ray Photoelectron Spectroscopy to Characterization of Au Nanoparticles Formed by IonImplantation into SiO2. Applied Surface Science, 256, 1061-1064.
[15]  Cesca, T., Maurizio, C., Kalinic, B., Scian, C., Trave, E., Battaglin, G., Mazzoldi, P. and Mattei, G. (2014) Luminescent Ultra-Small Gold Nanoparticles Obtained by Ion Implantation in Silica. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 326, 7-10.
[16]  Ferrara, M.C., Mirenghi, L., Mevoli, A. and Tapfer, L. (2008) Synthesis and Characterization of Sol-Gel Silica Films Doped with Size-Selected Gold Nanoparticles. Nanotechnology, 19, 65706-65714.
https://doi.org/10.1088/0957-4484/19/36/365706
[17]  Ruffino, F., Bongiorno, C., Giannazzo, F., Roccaforte, F., Raineri, V. and Grimaldi M.G. (2007) Effect of Surrounding Environment on Atomic Structure and Equilibrium Shape of Growing Nanocrystals: Gold in/on SiO2. Nanoscale Research Letters, 2, 240-247.
https://doi.org/10.1007/s11671-007-9058-4
[18]  Kerboua, C.H., Lamarre, J.M., Martinu, L. and Roorda, S. (2007) Deformation, Alignment and Anisotropic Optical Properties of Gold Nanoparticles Embedded inSilica. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 257, 42-46.
[19]  Lamarre, J.M., Yu, Z., Harkati, C., Roorda, S. and Martinu, L. (2005) Optical and Microstructural Properties of Nanocomposite Au/SiO2 Films Containing Particles Deformed by Heavy Ion Irradiation. Thin Solid Films, 479, 232-237.
[20]  Liao, H.B., Xiao, R.F., Fu, J.S., Yu, P., Wong, G.K. and Sheng, P. (1997) Large Third-Order Optical Nonlinearity in Au: SiO2 Composite Films near the Percolation Threshold. Applied Physics Letters, 70, 1-3.
https://doi.org/10.1063/1.119291
[21]  Tanahashi, I., Manabe, Y., Tohda, T., Sasaki, S. and Nakamura, A. (1996) Optical Nonlinearities of Au/SiO2 Composite Thin Films Prepared by a Sputtering Method. Journal of Applied Physics, 79, 1244-1249.
https://doi.org/10.1063/1.361018
[22]  Belahmar, A. and Chouiyakh, A. (2013) Effect of Post-Annealing on Structural and Optical Properties of Gold Nanoparticles Embedded in Silica Films Grown by RF Sputtering. Advances in Physics Theories, 15, 38-46.
[23]  Belahmar, A. and Chouiyakh, A. (2016) Investigation of Surface Plasmon Resonance and Optical Band Gap Energy in Gold/Silica Composite Films Prepared by RF-Sputtering. Journal of Nanoscience and Technology, 2, 81-84.
[24]  Belahmar, A. and Chouiyakh, A. (2017) Effect of Substrate Temperature on Structural and Optical Properties of Au/SiO2 Nanocomposite Films Prepared by RF Magnetron Sputtering. Open Access Library Journal, 4, e3810.
[25]  Belahmar, A. and Chouiyakh, A. (2016) Structural and Optical Study of Au Nanoparticles Incorporated in Al2O3 and SiO2 Thin Films Grown by RF-Sputtering. International Journal of Advanced Research in Computer Science and Software Engineering, 6, 109-116.
[26]  Yu, G.Q., Tay, B.K., Zhao, Z.W., Sun, X.W. and Fu, Y.Q. (2005) Ion Beam Co-Sputtering Deposition of Au/SiO2 Nanocomposites. Physica E: Low Dimensional Systems and Nanostructures, 27, 362-368.
[27]  Zhuo, B., Li, Y., Teng, S. and Yang, A. (2010) Fabrication and Characterization Au/SiO2 Nanocomposite Films. Applied Surface Science, 256, 3305-3308.
[28]  Belahmar, A. and Chouiyakh, A. (2016) Influence of Argon Pressure on the Optical Band Gap Energy and Urbach Tail of Sputtered Au/SiO2 Nanocomposite Films. International Journal of Advanced Research in Computer Science and Software Engineering, 6, 7-13.
[29]  Sangpour, P., Akhavan, O., Moshfegh, A.Z. and Roozbehi, M. (2007) Formation of Gold Nanoparticles in Heat-Treated Reactive Co-Sputtered Au/SiO2 Thin Films. Applied Surface Science, 254, 286-290.
[30]  Belahmar, A. and Chouiyakh, A. (2016) Sputtering Synthesis and Thermal Annealing Effect on Gold Nanoparticles in Al2O3 Matrix. Journal of Nanoscience and Technology, 2, 100-103.
[31]  Yeshchenko, O.A., Bondarchuk, I.S., Gurin, V.S., Dmitruk, I.M. and Kotko, A.V. (2013) Temperature Dependence of the Surface Plasmon Resonance in Gold Nanoparticles. Surface Science, 608, 275-281.
[32]  Kittel, C. (2005) Introduction to Solid State Physics. John Willey & Sons, New York.
[33]  Mie, G. (1908) Contributions to the Optics of Turbid Media, Particularly of Colloidal Metal solutions. Annalen der Physik, 25, 377-445.
https://doi.org/10.1002/andp.19083300302
[34]  Hovel, H., Fritz, S., Hilger, S., Kreibig, U. and Vollmer, U. (1993) Width of Cluster Plasmon Resonances: Bulk Dielectric Functions and Chemical Interface Damping. Physical Review B, 48, 18178-18188.
https://doi.org/10.1103/PhysRevB.48.18178
[35]  Palik, E.D. (1991) Handbook of Optical Constants of Solids. Academic Press, New York.
[36]  Palpant, B., et al. (1998) Optical Properties of Gold Clusters in the Size Range 2-4 nm. Physical Review B, 57, 1963-1970.
https://doi.org/10.1103/PhysRevB.57.1963

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413