
The Relativistic Giant Atom: Evidences and RecommendationsDOI: 10.4236/oalib.1103797, PP. 150 Subject Areas: Quantum Mechanics Keywords: Quantum Physics, Relativistic Mass, Microscopic State, UltraCold Neutrons, Solar System Abstract
In 2017 we published a new theory under the title: physics of the relativistic giant atom [1], where we suggested an alternative solution for the theory of special relativity. Some points were ambigious. Here in this present article we rewrite the same paper with clarification of the ambigios points, and with adding new ideas. If the original relativity says: the relativistic mass m(v) of a particle increases and its relativistic length decreases with a defined γ factor hence, the hidden meaning of this original solution is appearance of the relativistic linear mass density in the form of: . This rearrangement may allow—under defined conditions—an alternative relativistic solution in the form of creation of new particles counting , each with the same original rest mass mo and the same original rest radius ro. This study searches in the conditions required for this alternative solution as follow: if we wrote the famous Einstein’s equation of the rest mass of a particle (let it, a proton) as: then this form describes the particle electromagnetic energy in a rest state, where the proton doesn’t feel—from interior— its charge and consequently this equation cannot describe repulsive electric energy. If we multiplied the left side of this equation by the number one then the result should be the same right side, and the equation still describes the proton in its rest state. Now if we defined a sphere s, with a quantity of protons p, distributed homogeneously among much more number of neutrons n, and if we have a quantity equal the number one as: (where; is the spacing between particles). (where rs is the radius of the sphere while c is the speed of the electromagnetic energy and not real particle speed). This nonrelativistic equation is still carrying the same meaning, and it is—still—describing the rest mass equivalent energy of the same particle with the same rest state defined by the new spacing rc (in addition to its inertial description defined by its rest radius ro). The hidden meaning here is condensation of the particles in this new rest state. This last equation realizes two results: first, it describes the particle in its rest state, so the sphere can absorb physically all the repulsive & exclusive energies, and second, it realizes the initial conditions:&(where the Coulomb’s equation form is now fixed on the Einstein’s form) hence, we may conclude an alternative relativistic solution in the form of: This idea led me to put a base for physics of selfreplication as application of the relativistic giant charge which is ultracold fermions condensate. This state has the relativistic efficiency to make the particles replicate and withdraw all the kinetic energy. When we followed up physics of the giant atom we found complete coincidence between the estimated parameters of its orbit and the astronomic parameters of the solar system. This means that the solar system—in one of its primordial evolutionary stages—was a giant atom like system, and in the same time gives documents for the correctness of physics of the giant atom.
Eldieb, E. (2018). The Relativistic Giant Atom: Evidences and Recommendations. Open Access Library Journal, 5, e3797. doi: http://dx.doi.org/10.4236/oalib.1103797. References
comments powered by Disqus 