全部 标题 作者
关键词 摘要


Flat Directions and Leptogenesis in a “New” uv SSM

DOI: 10.4236/oalib.1103405, PP. 1-23

Subject Areas: Modern Physics

Keywords: Supersymmetric Models

Full-Text   Cite this paper   Add to My Lib

Abstract

In this paper, we give a brief review of the Minimal Supersymmetric Standard Model (MSSM) and “ u from v” Supersymmetric Standard Model ( uv SSM). Then we propose a generalization of uv SSM in order to explain the recent ATLAS, CMS and LHCb results. This “new” uv SSM generalizes the superpotential Wsupport of uv SSM by including two terms that generate a mixing among leptons, gauginos and higgsinos while keeping the charginos and neutralinos masses unchanged. Also, it is potentially interesting for cosmological applications as it displays flat directions of the superpotential and a viable leptogenesis mechanism.

Cite this paper

Rodriguez, M. C. and Vancea, I. V. (2017). Flat Directions and Leptogenesis in a “New” uv SSM. Open Access Library Journal, 4, e3405. doi: http://dx.doi.org/10.4236/oalib.1103405.

References

[1]  Schwetz, T., Tortola, M. and Valle, J.W.F. (2008) Three-Flavor Neutrino Oscillation Update. New Journal of Physics, 10, Article ID: 113011.
[2]  Kraus, C., et al. (2005) Final Results from Phase II of the Mainz Neutrino Mass Search in Tritium β Decay. The European Physical Journal C, 40, 447-468.
https://doi.org/10.1140/epjc/s2005-02139-7
[3]  Lobashev, V.M., et al. (1999) Direct Search for Mass of Neutrino and Anomaly in the Tritium Beta-Spectrum. Physics Letters B, 460, 227-235.
https://doi.org/10.1016/S0370-2693(99)00781-9
[4]  Osipowicz, A., et al. (2001) KATRIN: A Next Generation Tritium Beta Decay Experiment with Sub-eV Sensitivity for the Electron Neutrino Mass. Letter of Intent.
[5]  Schechter, J. and Valle, J.W.F. (1982) Neutrinoless Double-β Decay in SU(2) × U(1) Theories. Physical Review D, 25, 2951.
https://doi.org/10.1103/PhysRevD.25.2951
[6]  Klapdor-Kleingrothaus, H.V., et al. (2001) Latest Results from the HEIDELBERG-MOSCOW Double Beta Decay Experiment. The European Physical Journal A, 12, 147-154.
https://doi.org/10.1007/s100500170022
[7]  Aalseth, C.E., et al. (1999) Neutrinoless Double-β Decay of 76 Ge: First Results from the International Germanium Experiment (IGEX) with Six Isotopically Enriched Detectors. Physical Review C, 59, 2108.
[8]  Aalseth, C.E., et al. (2002) The IGEX Ge-76 Neutrinoless Double Beta Decay Experiment: Prospects for Next Generation Experiments. Physical Review D, 65, Article ID: 092007.
[9]  Wess, J. and Bagger, J. (1992) Supersymmetry and Supergravity. Princeton University Press.
[10]  Arnaboldi, C., et al. (2008) Results from a Search for the 0 ν β β-Decay of 130Te. Physical Review C, 78, Article ID: 035502.
https://doi.org/10.1103/PhysRevC.78.035502
[11]  Arnaboldi, C., et al. (2004) CUORE: A Cryogenic Underground Observatory for Rare Events. Nucl. Instrum. Meth. A, 518, 775.  
[12]  Dimopoulos, S. and Hall, L.J. (1988) Lepton- and Baryon-Number Violating Collider Signatures from Supersymmetry. Physics Letters B, 207, 210-216.
https://doi.org/10.1016/0370-2693(88)91418-9
[13]  Fiorini, E. (1988) CUORE: A Cryogenic Underground Observatory for Rare Events. Physics Reports, 307, 309.
[14]  Ardito, R., et al. (2005) CUORE: A Cryogenic Underground Observatory for Rare Events. arXiv:hep-ex/0501010
[15]  Schonert, S., et al. (2005) The Germanium Detector Array (GERDA) for the Search of Neutrinoless β β Decays of 76 Ge at LNGS. Nuclear Physics BProceedings Supplements, 145, 242-245.
[16]  Abt, I., et al. (2004) A New 76Ge Double Beta Decay Experiment at LNGS. arXiv:hep-ex/0404039
[17]  Aalseth, C.E., et al. (2004) The Majorana Neutrinoless Double-Beta Decay Experiment. Physics of Atomic Nuclei, 67, 2002-2010.
https://doi.org/10.1134/1.1825519
[18]  Avignone, F.T. (2008) The Majorana 76Ge Neutrino Less Double-Beta Decay Project: A Brief Update. Journal of Physics: Conference Series, 120, Article ID: 052059. https://doi.org/10.1088/1742-6596/120/5/052059
[19]  Spergel, D.N., et al. (2007) Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles, Data Processing, Radiometer Characterization, and Systematic Error Limits. The Astrophysical Journal Supplement Series, 170, 377.
[20]  Komatsu, E., et al. (2008) Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. The Astrophysical Journal Supplement Series, 180, 330-376.
[21]  Seljak, U., et al. (2005) Cosmological Parameter Analysis Including SDSS Ly α Forest and Galaxy Bias: Constraints on the Primordial Spectrum of Fluctuations, Neutrino mass, and Dark Energy. Physical Review D, 71, Article ID: 103515.
[22]  Tegmark, M., et al. (2006) Cosmological Constraints from the SDSS Luminous Red Galaxies. Physical Review D, 74, Article ID: 123507.
[23]  Aaij, R., et al. (2014) Test of Lepton Universality Using B → K-Decays. Physical Review Letters, 113, Article ID: 151601.
[24]  Aaij, R., et al. (2013) Observation of a Resonance in B → K μ μ-Decays at Low Recoil. Physical Review Letters, 111, Article ID: 112003.
[25]  Khachatryan, V., et al. Search for Heavy Neutrinos and W Bosons with Right-Handed Couplings in Proton-Proton Collisions at sqrt(s) = 8 TeV. arXiv: 1407.3683 [hep-ex].
[26]  CMS Collaboration (2014) Search for Pair-Production of First Generation Scalar Leptoquarks in pp Collisions at sqrt s = 8 TeV. Technical Report, CMS-PAS- EXO-12-041, CERN, Geneva.
[27]  Aad, G., et al. (2015) Search for High-Mass Diboson Resonances with Boson-Tagged Jets in Proton-Proton Collisions at √ s = 8 TeV with the ATLAS Detector. Journal of High Energy Physics, 2015: 55. [arXiv:1506.00962 [hep-ex]]
https://doi.org/10.1007/JHEP12(2015)055
[28]  The ATLAS Collaboration (2015) Search for Resonances Decaying to Photon Pairs in 3.2/fb of pp Collisions at √s = 13 TeV with the ATLAS Detector.
[29]  CMS Collaboration (2015) Search for New Physics in High Mass Diphoton Events in Proton-Proton Collisions at 13 TeV.
[30]  The ATLAS Collaboration (2016) Search for Resonances in Diphoton Events with the ATLAS Detector at s√s = 13 TeV.
[31]  CMS Collaboration (2016) Search for New Physics in High Mass Diphoton Events in 3.3 fb-13.3 fb-1 of Proton-Proton Collisions at s√=13 TeVs and Combined Interpretation of Searches at 8 TeV and 13 TeV.
[32]  Amaldi, U., de Boer, W. and Fürstenau, H. (1991) Comparison of Grand Unified Theories with Electroweak and Strong Coupling Constants Measured at LEP. Physics Letters B, 260, 447.
https://doi.org/10.1016/0370-2693(91)91641-8
[33]  Weinberg, S. (1979) Gauge Hierarchies. Physics Letters B, 82, 387-391.
[34]  Weinberg, S. (1976) Implications of Dynamical Symmetry Breaking. Physical Review D, 13, 974.
[35]  Drees, M., Godbole, R.M. and Royr, P. (2004) Theory and Phenomenology of Sparticles. World Scientific Publishing, Singapore.
[36]  Allanach, B.C., Kom, C.H. and Pas, H. (2009) Large Hadron Collider Probe of Supersymmetric Neutrinoless Double-Beta-Decay Mechanism. Physical Review Letters, 103, Article ID: 091801.
https://doi.org/10.1103/PhysRevLett.103.091801
[37]  Baer, H. and Tata, X. (2012) Weak Scale Supersymmetry: From Superfields to Scattering Events. Cambridge University Press, Cambridge.
[38]  Aitchison, I.J.R. (2005) Supersymmetry and the MSSM: An Elementary Introduction.
[39]  Fayet, P. (1975) Supergauge Invariant Extension of the Higgs Mechanism and a Model for the Electron and Its Neutrino. Nuclear Physics B, 90, 104-124.
https://doi.org/10.1016/0550-3213(75)90636-7
[40]  Fayet, P. (1977) Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions. Physics Letters B, 69, 489-494.
https://doi.org/10.1016/0370-2693(77)90852-8
[41]  Fayet, P. (1977) Mixing between Gravitational and Weak Interactions through the Massive Gravitino. Physics Letters B, 70, 461-464.
https://doi.org/10.1016/0370-2693(77)90414-2
[42]  Fayet, P. (2001) About the Origins of the Supersymmetric Standard Model. Nuclear Physics BProceedings Supplements, 101, 81-98.
https://doi.org/10.1016/S0920-5632(01)01495-5
[43]  Rodriguez, M.C. (2010) History of Supersymmetric Extensions of the Standard Model. International Journal of Modern Physics A, 25, 1091.
https://doi.org/10.1142/S0217751X10048950
[44]  Kim, J.E. and Nilles, H.P. (1984) The μ-Problem and the Strong CP-Problem. Physics Letters B, 138, 150-154.
https://doi.org/10.1016/0370-2693(84)91890-2
[45]  Lopez-Fogliani, D.E. and Munoz, C. (2006) Proposal for a Supersymmetric Standard Model. Physical Review Letters, 97, Article ID: 041801.
https://doi.org/10.1103/PhysRevLett.97.041801
[46]  Martin, S.P. (2010) A Supersymmetry Primer. Advanced Series on Directions in High Energy Physics, 21, 1.
[47]  Kuroda, M. (1999) Complete Lagrangian of MSSM.
[48]  Barbier, R., et al. (2005) R-Parity-Violating Supersymmetry. Physics Reports, 420, 1-195.
https://doi.org/10.1016/j.physrep.2005.08.006
[49]  Moreau, G. Phenomenological Study of R Parity Symmetry Violating Interactions in Supersymmetric Theories. (In French)
[50]  Biswas, S., Chowdhury, D., Han, S. and Lee, S.J. (2014) Explaining the Lepton Non-Universality at the LHCb and CMS from a Unified Framework.
[51]  Girardello, L. and Grisaru, M.T. (1982) Soft Breaking of Supersymmetry. Nuclear Physics B, 194, 65.
https://doi.org/10.1016/0550-3213(82)90512-0
[52]  Maekawa, C.M. and Rodriguez, M.C. (2006) Masses of Fermions in Supersymmetric Models.
[53]  Maekawa, C.M. and Rodriguez, M.C. (2008) Radiative Mechanism to Light Fermion Masses in the MSSM.
[54]  Haber, H.E. and Hempfling, R. (1991) Can the Mass of the Lightest Higgs Boson of the Minimal Supersymmetric Model be Larger Than mZ. Physical Review Letters, 66, 1815.
https://doi.org/10.1103/PhysRevLett.66.1815
[55]  Hall, L.J. and Suzuki, M. (1984) Explicit R-Parity Breaking in Supersymmetric Models. Nuclear Physics B, 231, 419-444.
https://doi.org/10.1016/0550-3213(84)90513-3
[56]  Banks, T., Grossman, Y., Nardi, E. and Nir, Y. (1995) Supersymmetry without R Parity and without Lepton Number. Physical Review D, 52, 5319.
https://doi.org/10.1103/PhysRevD.52.5319
[57]  Diaz, M.A., Romao, J.C. and Valle, J.W.F. (1998) Minimal Supergravity with R-Parity Breaking. Nuclear Physics B, 524, 23-40.
https://doi.org/10.1016/S0550-3213(98)00234-X
[58]  Borzumati, F. and Nomura, Y. (2001) Low-Scale See-Saw Mechanisms for Light Neutrinos. Physical Review D, 64, Article ID: 053005.
[59]  Borzumati, F., Hamaguchi, K. and Yanagida, T. (2001) Supersymmetric See Saw Model for the (1 3)-Scheme of Neutrino Masses. Physics Letters B, 497, 259-264.
https://doi.org/10.1016/S0370-2693(00)01351-4
[60]  Borzumati, F., Hamaguchi, K., Nomura, Y. and Yanagida, T. (2000) Variations on Supersymmetry Breaking and Neutrino Spectra.
[61]  Mohapatra, R.N. (1986) New Contributions to Neutrinoless Double-Beta Decay in Supersymmetric Theories. Physical Review D, 34, 3457.
https://doi.org/10.1103/PhysRevD.34.3457
[62]  Romao, J.C. and Valle, J.W.F. (1992) Neutrino Masses in Supersymmetry with Spontaneously Broken R-Parity. Nuclear Physics B, 381, 87-108.
https://doi.org/10.1016/0550-3213(92)90641-N
[63]  Davison, S. and Losada, M. (2002) Basis Independent Neutrino Masses in the R(p) Violating MSSM. Physical Review D, 65, Article ID: 075025.
[64]  Balysh, A., et al. (1995) Sub-eV Limit for the Neutrino Mass from 76Ge Double Beta Decay by the HEIDELBERG-MOSCOW Experiment. Physics Letters B, 356, 450-455.
[65]  Klapdor-Kleingrothaus, H.V. (1994) Double Beta Decay and Neutrino Mass. The Heidelberg-Moscow Experiment. Progress in Particle and Nuclear Physics, 32, 261-280.
[66]  Baudis, L., et al. (1997) The Heidelberg-Moscow Experiment: Improved Sensitivity for 76Ge Neutrinoless Double Beta Decay. Physics Letters B, 407, 219-224.
https://doi.org/10.1016/S0370-2693(97)00756-9
[67]  Klapdor-Kleingrothaus, H.V., Dietz, A., Harney, H.L. and Krivosheina, I.V. (2001) Evidence for Neutrinoless Double Beta Decay. Modern Physics Letters A, 16, 2409.
https://doi.org/10.1142/S0217732301005825
[68]  Chemtob, M. (2005) Phenomenological Constraints on Broken R Parity Symmetry in Supersymmetry Models. Progress in Particle and Nuclear Physics, 54, 71-191.
https://doi.org/10.1016/j.ppnp.2004.06.001
[69]  Günther, M., et al. (1997) Heidelberg-Moscow β Experiment with 76Ge: Full Setup with Five Detectors. Physical Review D, 55, 54.
https://doi.org/10.1103/PhysRevD.55.54
[70]  Vergados, J.D. (1987) Neutrinoless Double β-Decay without Majorana Neutrinos in Supersymmetric Theories. Physics Letters B, 184, 55-62.
https://doi.org/10.1016/0370-2693(87)90487-4
[71]  Hirsch, M., Klapdor-Kleingrothaus, H.V. and Kovalenko, S.G. (1995) New Contributions to Supersymmetric Mechanism of Neutrinoless Double Beta Decay. Physics Letters B, 352, 1-7.
https://doi.org/10.1016/0370-2693(95)00460-3
[72]  Hirsch, M., Klapdor-Kleingrothaus, H.V. and Kovalenko, S.G. (1995) New Constraints on R-Parity-Broken Supersymmetry from Neutrinoless Double Beta Decay. Physical Review Letters, 75, 17.
https://doi.org/10.1103/PhysRevLett.75.17
[73]  Babu, K.S. and Mohapatra, R.N. (1995) New Vector-Scalar Contributions to Neutrinoless Double Beta Decay and Constraints on R-Parity Violation. Physical Review Letters, 75, 2276.
https://doi.org/10.1103/PhysRevLett.75.2276
[74]  Hirsch, M., Klapdor-Kleingrothaus, H.V. and Kovalenko, S.G. (1996) On the SUSY Accompanied Neutrino Exchange Mechanism of Neutrinoless Double Beta Decay. Physics Letters B, 372, 181-186.
[75]  Ellwanger, U., Rausch de Traubenberg, M. and Savoy, C.A. (1993) Particle Spectrum in Supersymmetric Models with a Gauge Singlet. Physics Letters B, 315, 331-337. https://doi.org/10.1016/0370-2693(93)91621-S
[76]  Barr, S.M. (1982) A New Symmetry Breaking Pattern for SO (10) and Proton Decay. Physics Letters B, 112, 219-222.
https://doi.org/10.1016/0370-2693(82)90966-2
[77]  Nilles, H.P., Srednicki, M. and Wyler, D. (1983) Weak Interaction Breakdown Induced by Supergravity. Physics Letters B, 120, 346-348.
https://doi.org/10.1016/0370-2693(83)90460-4
[78]  Derendinger, J.-P. and Savoy, C.A. (1984) Quantum Effects and SU(2) × U(1) Breaking in Supergravity Gauge Theories. Nuclear Physics B, 237, 307-328.
https://doi.org/10.1016/0550-3213(84)90162-7
[79]  Ananthanarayan, B. and Pandita, P.N. (1997) The Nonminimal Supersymmetric Standard Model at Large Tan β. International Journal of Modern Physics A, 12, 2321. https://doi.org/10.1142/S0217751X97001353
[80]  Ellwanger, U. and Hugonie, C. (1999) Cascade Decays in the NMSSM.
[81]  Drees, M. (1989) Supersymmetric Models with Extended Higgs Sector. International Journal of Modern Physics A, 4, 3635.
https://doi.org/10.1142/S0217751X89001448
[82]  Montero, J.C., Pleitez, V. and Rodriguez, M.C. (2002) Lepton Masses in a Supersymmetric 3-3-1 Model. Physical Review D, 65, Article ID: 095008.
[83]  Catena, R., Covi, L. and Emken, T. (2015) Model independent limits on an ultra-light gravitino from Supernovae. Physical Review D, 91, Article ID: 123524.
[84]  Takayama, F. and Yamaguchi, M. (2000) Gravitino Dark Matter without R-Parity. Physics Letters B, 485, 388-392.
[85]  Hirsch, M., Porod, W. and Restrepo, D. (2005) Collider Signals of Gravitino Dark Matter in Bilinearly Broken R-Parity. Journal of High Energy Physics, 03, 062.
[86]  Buchmuller, W., Covi, L., Hamaguchi, K., Ibarra, A. and Yanagida, T. (2007) Gravitino Dark Matter in R-Parity Breaking Vacua. Journal of High Energy Physics, 0703, 037.
[87]  Bertone, G., Buchmuller, W., Covi, L. and Ibarra, A. (2007) Gamma-Rays from Decaying Dark Matter. Journal of Cosmology and Astroparticle Physics, 0711, 003.
[88]  Ibarra, A. and Tran, D. (2008) Antimatter Signatures of Gravitino Dark Matter Decay. Journal of Cosmology and Astroparticle Physics, 0807, 002.
[89]  Kim, H.B. and Kim, J.E. (2002) Late Decaying Axino as CDM and Its Lifetime Bound. Physics Letters, 527, 18-22.
https://doi.org/10.1016/S0370-2693(01)01507-6
[90]  Escudero, N., López-Fogliani, D.E., Munoz, C. and de Austri, R.R. (2008) Analysis of the Parameter Space and Spectrum of the μνSSM. Journal of High Energy Physics, 0812, 099.
[91]  Munoz, C. (2010) Phenomenology of a New Supersymmetric Standard Model: The μνSSM. AIP Conference Proceedings, 1200, 413-416.
[92]  Choi, K.Y., Lopez-Fogliani, D.E., Munoz, C. and de Austri, R.R. (2010) Gamma-Ray Detection from Gravitino Dark Matter Decay in the Mu Nu SSM. Journal of Cosmology and Astroparticle Physics, 1003, 028.
[93]  Gomez-Vargas, G.A., Fornasa, M., Zandanel, F., Cuesta, A.J., Munoz, C., Prada, F. and Yepes, G. (2012) CLUES on Fermi-LAT Prospects for the Extragalactic Detection of Mu Nu SSM Gravitino Dark Matter. Journal of Cosmology and Astroparticle Physics, 02, 001.
[94]  Albert, A., et al. (2014) Search for 100 MeV to 10 GeV Gamma-Ray Lines in the Fermi-LAT Data and Implications for Gravitino Dark Matter in the μνSSM. Journal of Cosmology and Astroparticle Physics, 10, 023.
[95]  Enqvist, K. and Mazumd, A. (2003) Cosmological Consequences of MSSM Flat Directions. Physics Reports, 380, 99-234.
https://doi.org/10.1016/S0370-1573(03)00119-4
[96]  Affleck, I. and Dine, M. (1985) A New Mechanism for Baryogenesis. Nuclear Physics B, 249, 361-380.
https://doi.org/10.1016/0550-3213(85)90021-5
[97]  Dine, M., Randall, L. and Thomas, S. (1995) Supersymmetry Breaking in the Early Universe. Physical Review Letters, 75, 398.
https://doi.org/10.1103/PhysRevLett.75.398
[98]  Dine, M., Randall, L. and Thomas, S. (1996) Baryogenesis from Flat Directions of the Supersymmetric Standard Model. Nuclear Physics B, 458, 291-323.
https://doi.org/10.1016/0550-3213(95)00538-2
[99]  Kusenko, A. (1997) Solitons in the Supersymmetric Extensions of the Standard Model. Physics Letters B, 405, 108-113.
[100]  Kusenko, A. and Shaposhnikov, M.E. (1998) Supersymmetric Q-Balls as Dark Matter. Physics Letters B, 418, 46-54.
https://doi.org/10.1016/S0370-2693(97)01375-0
[101]  Enqvist, K. and McDonald, J. (1998) Q-Balls and Baryogenesis in the MSSM. Physics Letters B, 425, 309-321.
[102]  Enqvist, K. and McDonald, J. (1999) B-Ball Baryogenesis and the Baryon to Dark Matter Ratio. Nuclear Physics B, 538, 321-350.
https://doi.org/10.1016/S0550-3213(98)00695-6
[103]  Jokinen, A. (2002) Analytical and Numerical Properties of Affleck-Dine Condensate Formation.
[104]  Kasuya, S. and Kawasaki, M. (2000) Q-Ball Formation through the Affleck-Dine Mechanism. Physical Review D, 61, Article ID: 041301.
[105]  Kasuya, S. and Kawasaki, E.M. (2000) Q-Ball Formation in the Gravity-Mediated SUSY Breaking Scenario. Physical Review D, 62, Article ID: 023512.
[106]  Enqvist, K., Jokinen, A. and McDonald, J. (2000) Flat Direction Condensate Instabilities in the MSSM. Physics Letters B, 483, 191-195.
[107]  Enqvist, K., Jokinen, A., Multamaki, T. and Vilja, I. (2001) Numerical Simulations of Fragmentation of the Affleck-Dine Condensate. Physical Review D, 63, Article ID: 083501.
[108]  Kasuya, S. and Kawasaki, M. (2001) Q-Ball Formation: Obstacle to Affleck-Dine Baryogenesis in the Gauge-Mediated SUSY Breaking? Physical Review D, 64, Article ID: 123515.
[109]  Multamaki, T. and Vilja, I. (2002) Simulations of Q-Ball Formation. Physics Letters B, 535, 170-176.
[110]  Enqvist, K., Kasuya, S. and Mazumdar, A. (2002) Reheating as a Surface Effect. Physical Review Letters, 89, Article ID: 091301.
[111]  Enqvist, K., Kasuya, S. and Mazumdar, A. (2002) Inflatonic Solitons in Running Mass Inflation. Physical Review D, 66, Article ID: 043505.
[112]  Enqvist, K. and McDonald, J. (1999) Observable Isocurvature Fluctuations from the Affleck-Dine Condensate. Physical Review Letters, 83, 2510.
[113]  Enqvist, K. and McDonald, J. (2000) Inflationary Affleck-Dine Scalar Dynamics and Isocurvature Perturbations. Physical Review D, 62, Article ID: 043502.
[114]  Kawasaki, M. and Takahashi, F. (2001) Adiabatic and Isocurvature Fluctuations of Affleck-Dine Field in D-Term Inflation Model. Physics Letters B, 516, 388-394.
[115]  Enqvist, K., Kasuya, S. and Mazumdar, A. (2003) Adiabatic Density Perturbations and Matter Generation from the Minimal Supersymmetric Standard Model. Physical Review Letters, 90, Article ID: 091302.
[116]  Postma, M. (2003) Curvaton Scenario in Supersymmetric Theories. Physical Review D, 67, Article ID: 063518.
[117]  Enqvist, K., Jokinen, A., Kasuya, S. and Mazumdar, A. (2003) MSSM Flat Direction as a Curvaton. Physical Review D, 68, Article ID: 103507.
[118]  Kasuya, S., Kawasaki, M. and Takahashi, F. (2003) MSSM Curvaton in the Gauge-Mediated SUSY Breaking. Physics Letters B, 578, 259-268.
[119]  Postma, M. and Mazumdar, A. Resonant Decay of Flat Directions: Applications to Curvaton Scenarios, Affleck-Dine Baryogenesis, and Leptogenesis from a Sneutrino Condensate. arXiv: hep-ph/0304246.
[120]  Hamaguchi, K., Kawasaki, M., Moroi, T. and Takahashi, F. (2003) Curvatons in Supersymmetric Models. Physical Review D, 69, Article ID: 063504.
[121]  Enqvist, K., Kasuya, S. and Mazumdar, A. (2003) MSSM Higgses as the Source of Reheating and All Matter. Physical Review Letters, 93, Article ID: 061301.
[122]  Enqvist, K., Mazumdar, A. and Postma, M. (2003) Challenges in Generating Density Perturbations from a Fluctuating Inflaton Coupling. Physical Review D, 67, Article ID: 121303.
[123]  Mazumdar, A. and Postma, M. (2003) Evolution of Primordial Perturbations and a Fluctuating Decay Rate. Physics Letters B, 573, 5.
[124]  Gherghetta, T., Kolda, C.F. and Martin, S.P. (1996) Flat Directions in the Scalar Potential of the Supersymmetric Standard Model. Nuclear Physics B, 468, 37-58.
https://doi.org/10.1016/0550-3213(96)00095-8
[125]  Allahverdi, R., Dutta, B. and Mazumdar, A. (2007) Unifying Inflation and Dark Matter with Neutrino Masses. Physical Review Letters, 99, Article ID: 261301.
[126]  Allahverdi, R., Kusenko, A. and Mazumdar, A. (2007) A-Term Inflation and the Smallness of Neutrino Masses. Journal of Cosmology and Astroparticle Physics, 0707, 018.
[127]  Allahverdi, R. (2009) Sneutrino Dark Matter in Light of PAMELA.
[128]  Sakharov, A.D. (1967) Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe. JETP Letters, 5, 24-27.
[129]  Kobayashi, M. and Maskawa, T. (1973) CP-Violation in the Renormalizable Theory of Weak Interaction. Progress of Theoretical Physics, 49, 652-657.
https://doi.org/10.1143/PTP.49.652
[130]  Gavela, M.B., Hernandez, P., Orloff, J. and Pene, O. (1994) Standard Model CP-Violation and Baryon Asymmetry. Modern Physics Letters A, 9, 795.
https://doi.org/10.1142/S0217732394000629
[131]  Fukugita, M. and Yanagida, T. (1986) Barygenesis without Grand Unification. Physics Letters B, 174, 45-47.
https://doi.org/10.1016/0370-2693(86)91126-3
[132]  Chung, D.J.H. and Long, A.J. (2010) Electroweak Phase Transition in the μνSSM. Physical Review D, 81, Article ID: 123531.
[133]  Law, S.S.C. (2009) Neutrino Models and Leptogenesis.
[134]  Law, S.S.C. (2010) Leptogenesis: The Electromagnetic Version. Modern Physics Letters A, 25, 994.
https://doi.org/10.1142/S0217732310000150
[135]  Kajiyama, Y., Khalil, S. and Raidal, M. (2009) Electron EDM and Soft Leptogenesis in Supersymmetric B-L Extension of the Standard Model. Nuclear Physics B, 820, 75. https://doi.org/10.1016/j.nuclphysb.2009.05.011
[136]  Allanach, B., Biswas, S., Mondal, S. and Mitra, M. (2014) Explaining a CMS eejj Excess with R—Parity Violating Supersymmetry and Implications for Neutrinoless Double Beta Decay.
[137]  Allanach, B.C., Dev, P.S.B. and Sakurai, K. (2016) ATLAS Diboson Excess Could Be an R—Parity Violating Dismuon Excess. Physical Review D, 93, Article ID: 035010.
[138]  Allanach, B.C., Dev, P.S.B., Renner, S.A. and Sakurai, K. (2015) Di-Photon Excess Explained by a Resonant Sneutrino in R-Parity Violating Supersymmetry. Physical Review D, 93, Article ID: 115022.

Full-Text


comments powered by Disqus