All Title Author
Keywords Abstract


Targeted Mutagenesis of Beta-Lactoglobulin Gene in Caprine Fetal Fibroblasts by Context-Dependent Assembly Zinc-Finger Nucleases

DOI: 10.4236/oalib.1102813, PP. 1-8

Subject Areas: Genomics, Cell Biology

Keywords: Context-Dependent Assembly, Zinc Finger Nucleases, Beta-Lactoglobulin, Gene Knockout, Goat

Full-Text   Cite this paper   Add to My Lib

Abstract

Targeted mutagenesis by zinc-finger nucleases (ZFNs) can be used to generate knock-out mammalian cell lines with high efficiency. A number of different methods have been developed for the design and assembly of gene-specific ZFNs, making them easily accessible to researchers. In this study, we used ZFNs assembled through the CoDA (context-dependent assembly) platforms to generate mutant caprine fetal fibroblasts cells for the BLG gene. ZFN plasmid was introduced into the caprine fetal fibroblasts cell by electroporation. ZFN-induced cleavage of the target sequence was confirmed by the Surveyor nuclease assay analysis. Sequence analysis revealed that ZFN-induced mutations such as base insertion, deletion, or substitution were generated in the ZFN cleavage site of BLG. The simplicity and efficacy of CoDA will enable broad application of ZFN technology. This technique could be used with homologous arm, which may target foreign genes into the BLG locus at higher efficiency.

Cite this paper

Yuan, Y. , Cheng, Y. , Wang, J. and Peng, Q. (2016). Targeted Mutagenesis of Beta-Lactoglobulin Gene in Caprine Fetal Fibroblasts by Context-Dependent Assembly Zinc-Finger Nucleases. Open Access Library Journal, 3, e2813. doi: http://dx.doi.org/10.4236/oalib.1102813.

References

[1]  Provost, F.L., Lillico, S., Passet, B., Young, R., Whitelaw, B. and Vilotte, J.L. (2009) Zinc Finger Nuclease Technology Heralds a New Era in Mammalian Transgenesis. Trends Biotechnology, 28, 134-141.
http://dx.doi.org/10.1016/j.tibtech.2009.11.007
[2]  Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S. and Gregory, P.D. (2010) Genome Editing with Engineered Zinc Finger Nucleases. Nat Reviews Genetics, 11, 636-646.
http://dx.doi.org/10.1038/nrg2842
[3]  Rémy, S., Tesson, L.S., Ménoret, C., Usal, A., Scharenberg, M. and Anegon, S. (2010) Zinc-Finger Nucleases: A Powerful Tool for Genetic Engineering of Animals. Transgenic Research, 19, 363-371.
http://dx.doi.org/10.1007/s11248-009-9323-7
[4]  Lei, Y., Lee, C. L., Joo, K., Zarzar, J., Liu, Y., Dai, B., Fox, V. and Wang, P. (2011) Gene Editing of Human Embryonic Stem Cells via an Engineered Baculoviral Vector Carrying Zinc-Finger Nucleases. Molecular therapy, 19, 942-950.
http://dx.doi.org/10.1038/mt.2011.12
[5]  Meyera, M., Angelis, M.H., Wursta, W. and Kühn, R. (2010) Gene Targeting by Homologous Recombination in Mouse Zygotes Mediated by Zinc-Finger Nucleases. Proceedings of the National Academy of Sciences of the USA, 107, 15022-15026.
http://dx.doi.org/10.1073/pnas.1009424107
[6]  Lutz, A.J., Li, P., Estrada, J.L., Sidner, R.A., Chihara, R.K., Downey, S.M., Burlak, C., Wang, Z.Y., Reyes, L.M, Ivary, B., Yin, F., Blankenship, R.L., Paris, L.L. and Tecto, A.J. (2013) Double Knockout Pigs Deficient in N-Glycolylneura- minic Acid and GALACTOSE a-1, 3-Galactose Reduce the Humoral Barrier to Xenotransplantation. Xenotransplantation, 20, 27-35.
http://dx.doi.org/10.1111/xen.12019
[7]  Yang, D., Yang, H., Li, W., Zhao, B., Ouyang, Z., Liu, Z., Zhao, Y., Fan, N., Song, J., Tian, J., Li, F., Zhang, J., Chang, L., Pei, D., Chen, Y.E. and Lai, L. (2011) Generation of PPAR Gamma Mono-Allelic Knockout Pigs via Zinc-Finger Nucleases and Nuclear Transfer Cloning. Cell Research, 21, 979-982.
http://dx.doi.org/10.1038/cr.2011.70
[8]  Whyte, J.J. and Prather, R.S. (2011) Zinc Finger Nucleases to Create Custom-Designed Modifications in the Swine (Sus scrofa) Genome. Journal Animal Science, 90, 1111-1117.
http://dx.doi.org/10.2527/jas.2011-4546
[9]  Hauschilda, J., Petersena, B., Santiagob, Y., Queissera, A.L., Carnwatha, J.W., Lucas-Hahna, A., Zhang, L., Meng, X., Gregory, P.D., Schwinzerd, R., Costb, G.J. and Niemanna, H. (2011) Efficient Generation of a Biallelic Knockout in Pigs Using Zinc-Finger Nucleases. Proceedings of the National Academy of Sciences of the USA, 108, 2013-2017.
http://dx.doi.org/10.1073/pnas.1106422108
[10]  Hauschild-Quintern, J., Petersen, B., Cost, G.J. and Niemann. H. (2012) Gene Knockout and Knockin by Zinc-Finger Nucleases: Current Status and Perspectives. Cellular Molecular Life Sciences, 70, 2969-2983.
http://dx.doi.org/10.1007/s00018-012-1204-1
[11]  Ramirez, C.L., Foley, J.E., Wright, D.A., Muller-Lerch, F., Rahman, S.H., Cornu, T.I., Winfrey, R.J., Sander, J.D., Fu, F., Townsend, J. A., Cathomen, T., Voytas, D.F. and Joung, J.K. (2008) Unexpected Failure Rates for Modular Assembly of Engineered Zinc-Fingers. Nature Methods, 5, 374-375.
http://dx.doi.org/10.1038/nmeth0508-374
[12]  Whyte, J.J., Zhao, J., Wells, K.D., Samuel, M.S., Whitworth, K.M., Walters, E.M., Laughlin, M.H. and Prathe, R.S. (2011) Gene Targeting with Zinc Finger Nucleases to Produce Cloned eGFP Knockout. Molecular Reproduction Development, 78, 2.
http://dx.doi.org/10.1002/mrd.21271
[13]  Yu, S., Luo, J., Song, Z., Ding, F., Dai, Y. and Li, N. (2011) Highly Efficient Modification of Beta-Lactoglobulin (BLG) Gene via Zinc-Finger Nucleases in Cattle. Cell Research, 21, 1638-1640.
http://dx.doi.org/10.1038/cr.2011.153
[14]  Chen, S., Oikonomou, G., Chiu, C.N., Niles, B.J., Liu, J., Lee, D.A., Antoshechkin, I. and Prober, D.A. (2013) A large-Scale in Vivo Analysis Reveals That TALENs Are Significantly More Mutagenic than ZFNs Generated Using Context-Dependent Assembly. Nucleic Acids Research, 41, 2769-2778.
http://dx.doi.org/10.1093/nar/gks1356
[15]  Sood, R., Carrington, B., Bishop, K., Jones, M., Rissone, A., Candotti, F., Chandrasekharappa, S.C. and Liu, P. (2013) Efficient Methods for Targeted Mutagenesis in Zebrafish Using Zinc-Finger Nucleases: Data from Targeting of Nine Genes Using CompoZr or CoDA ZFNs. PloS One, 8, e57239.
http://dx.doi.org/10.1371/journal.pone.0057239
[16]  Sander, J.D., Dahlborg, E.J., Goodwin, M.J., Cade, L., Zhang, F., Cifuentes, D., Curtin, S.J., Blackburn, J.S., Thibodeau-Beganny, S., Qi, Y., Pierick, C. J., Hoffman, E., Maeder, M.L., Khayter, C., Reyon, D., Dobbs, D., Langenau, D.M., Stupar, R.M., Giraldez, A.J., Voytas, D.F., Peterson, R.T., Yeh, J.R.J. and Joung, J.K. (2011) Selection-Free Zinc-Finger-Nuclease Engineering by Context-Dependent Assembly (CoDA). Nature Methods, 8, 67-69.
http://dx.doi.org/10.1038/nmeth.1542
[17]  Kwon, D. N., Lee, K., Kang, M. J., Choi, Y.J., Park, C., Jeffrey, J., Brown, A.N., Kim, J.H., Samue, M., Mao, J., Park, K.W., Murphy, C.N., Prather, R.S. and Kim, J.H. (2013) Production of Biallelic CMP-Neu5Ac Hydroxylase Knock-Out Pigs. Scientific Reports, 3, 1981-1990.
http://dx.doi.org/10.1038/srep01981
[18]  Li, P., Estrada, J.L., Burlak, C. and Tector, A.J. (2013) Biallelic Knockout of the Alpha-1, 3 Galactosyltransferase Gene in Porcine Liver-Derived Cells Using Zinc Finger Nucleases. Journal of Surgical Research, 181, 39-45.
http://dx.doi.org/10.1016/j.jss.2012.06.035
[19]  Toscano, M.G., Anderson, P., Munoz, P., Lucena, G., Cobo, M., Benabdellah, K., Gregory, P.H., Holmes, M.C. and Martin, F. (2013) Use of Zinc-Finger Nucleases to Knock out the WAS gene in K562 Cells: A Human Cellular Model for Wiskott-Aldrich Syndrome. Disease Models Mechanisms, 6, 544-554.
http://dx.doi.org/10.1242/dmm.010652
[20]  Cao, S.Z., Yue, C.H, Li, X.R., Feng, C., Long, C. and Pan, D. K. (2013) Production of Myostatin Gene Knockout Wuzhishan Miniature Pig Fibroblasts with Zinc-Finger Nucleases. HEREDITAS, 35, 778-785.
http://dx.doi.org/10.3724/SP.J.1005.2013.00778

Full-Text


comments powered by Disqus