全部 标题 作者
关键词 摘要


Quantitative Structure Activity Relationship Analysis of Selected Chalcone Derivatives as Mycobacterium tuberculosis Inhibitors

DOI: 10.4236/oalib.1102432, PP. 1-13

Subject Areas: Theoretical Chemistry

Keywords: Anti-Tuberculosis, Descriptors, GFA, Model Validation, QSAR

Full-Text   Cite this paper   Add to My Lib

Abstract

In order to gain further insights into the structural requirements for anti-tuberculosis activity by chalcone derivatives of 1,3-diphenylprop-2-ene-1-one, quantitative structure activity relationship (QSAR) was performed using genetic function approximation (GFA). Geometry optimization was achieved at the density functional theory (DFT) level using Becke’s three-parameter Lee-Yang- Parr hybrid functional (B3LYP) in combination with the 6-31G* basis set. Subsequently, quantum chemical and molecular descriptors were generated and divided into training and test sets by Kennard Stone algorithm. Internal and external validations as well as Y-randomization tests were employed in model validation. Five predictive models were generated by GFA. The generated models showed that constitutional indices, 2D autocorrelations and radial distribution function (RDF) descriptors were important contributors to anti-tuberculosis activity of 1,3-diphenylprop-2-ene-1-one derivatives. Based on validation results, model 4 was chosen as the best of the five models.

Cite this paper

Ogadimma, A. I. and Adamu, U. (2016). Quantitative Structure Activity Relationship Analysis of Selected Chalcone Derivatives as Mycobacterium tuberculosis Inhibitors. Open Access Library Journal, 3, e2432. doi: http://dx.doi.org/10.4236/oalib.1102432.

References

[1]  World Health Organization (WHO) (2014) Global Tuberculosis Report.
[2]  Mack, U., Migliori, G.B., Sester, M., Rieder, H.L., Ehlers, S., Goletti, D., Bossink, A., Magdorf, K., Holscher, C., Kampmann, B., Arend, S.M., Detjen, A., Bothamley, G., Zellweger, J.P., Milburn, H., Diel, R., Ravn, P., Cobelens, F., Cardona, P.J., Kan, B., Solovic, I., Duarte, R., Cirillo, D.M. and Lange, C. for the TBNET (2009) LTBI: Latent Tuberculosis Infection or Lasting Immune Responses to M. Tuberculosis? ATBNET Consensus Statement. European Respiratory Society, 33, 956-973.
http://dx.doi.org/10.1183/09031936.00120908
[3]  European Centre for Disease Prevention and Control. (2011) Use of Interferon-Gamma Release Assays in Support of TB Diagnosis. ECDC, Stockholm.
[4]  Tripathi, R., Tewari, N., Dwivedi, N. and Tiwari, V.K. (2005) Fighting Tuberculosis: An Old Disease with New Challenges. Medicinal Research Reviews, 25, 93-131.
http://dx.doi.org/10.1002/med.20017
[5]  Alejandro, S.P., Marcus Tulius, S. and de Paulo-Emerenciano, V. (2010) Current Pharmaceutical Design of Antituberculosis Drugs: Future Perspectives. Current Pharmaceutical Design, 16, 2656-2665.
http://dx.doi.org/10.2174/138161210792389289
[6]  Ibezim1, E.C., Duchowicz, P.R., Ibezim, N.E., Mullen, L.M.A., Onyishi, I.V., Brown, S.A. and Castro, E.A. (2009) Computer-Aided Linear Modeling Employing QSAR for Drug Discovery. Scientific Research and Essay, 4, 1559- 1564.
[7]  Eric, G.M., Uzairu, A. and Mamza, P.A.P. (2015) Investigation of the Activity of 8-Methylquinolones against Mycobacterium tuberculosis Using Theoretical Molecular Descriptors: A Case Study. European Scientific Journal September, 11, 1857-7881.
[8]  Ravichandran, V., Shalini, S., Sokkalingam, A.D., Harish, R. and Suresh, K. (2014) QSAR Study of 7-Chloroquinoline Derivatives as Antitubercular Agents. World Journal of Pharmacy and Pharmaceutical Sciences, 3, 1072-1082.
[9]  Ravichandran, V., Shalini, S., Kumar, K.V., Harish, R. and Kumar, K.S. (2015) QSAR Study on Arylthioquinoline Derivatives as Anti-Tubercular Agents. PTB Reports, 1, 81-86.
http://dx.doi.org/10.5530/PTB.1.2.8
[10]  Younes, A., Abdelkader, A., Hayat, L., Ahmed, R., Driss, Z. and Mohamed, Z. (2014) QSAR for Antimycobacterial Activity of β-Thia Adduct of Chalcone and Diazachalcone Derivatives. International Journal of Computational and Theoretical Chemistry, 2, 20-25.
http://dx.doi.org/10.11648/j.ijctc.20140203.11

[11]  Gupta, R.A. and Kaskhedikar, S.G. (2012) Synthesis, Evaluation and QSAR Analysis of 5-Nitrofuran-2-Yl/4-Nitro- phenyl Methylene Substituted Hydrazides as Antitubercular Agents. Asian Journal of Pharmaceutical and Clinical Research, 5, 251-259.
[12]  Priyadarsini, R., Tharanib, C.B., Sathya, S. and Kavithaa, S. (2012) Pharmacophore Modeling and 3D-QSAR Studies on Substituted Benzothiazole/Benzimidazole Analogues as DHFR Inhibitors with Antimycobacterial Activity. International Journal of Pharma Sciences and Research, 3, 4441-4450.
[13]  Sawarkar, V.M., Dudhe, P.B., Nagras, M.A., Bhosle, P.V., Jadhav, B. and Meshram, R.S. (2013) 2D & 3D QSAR Studies of Biaryl Analogues of Pa-824 Having Various Ether Linkers: An Approach to Design Antitubercular Agents. Pharmacophore, 4, 92-104.
[14]  Rajasekaran, S., Gopalkrishna, R. and Sanjay, P.P.N. (2011) 2D QSAR Studies of Some Novel Quinazolinone Derivatives as Antitubercular Agents. Journal of Computational Methods in Molecular Design, 1, 69-82.
[15]  Kamalakaran, A.S., Srinivasan, S. and Veluchamy, A. (2009) QSAR Studies on N-Aryl Derivative Activity towards Alzheimer’s Disease. Molecules, 14, 1448-1455.
http://dx.doi.org/10.3390/molecules14041448
[16]  Umaa, K., Kavithamani, A., Maida Engels, S.E. and Geetha, G. (2013) Quantitative Structure Activity Studies on the Anti-Mycobacterial Potentials of Certain Chalcone Derivatives. International Journal of Research in Organic Chemistry, 3, 6-10.
[17]  Lin, Y.M., Zhou, Y., Flavin, M.T. and Zhou, L.M. (2002) Chalcones and Flavonoids as Anti-Tuberculosis Agents. Bioorganic & Medicinal Chemistry, 10, 2795-2802.
http://dx.doi.org/10.1016/S0968-0896(02)00094-9
[18]  ChemBioDraw version 12.0. CambridgeSoft, 2010.
[19]  Spartan 14v112 (2013) Wavefunction, Inc., Irvine.
[20]  Ballabio, D., Consonni, V., Mauri, A., Claeys-Bruno, M., Sergent, M. and Todeschini, R. (2014) A Novel Variable Reduction Method Adapted from Space-Filling Designs. Chemometrics and Intelligent Laboratory Systems, 136, 147-154.
http://dx.doi.org/10.1016/j.chemolab.2014.05.010
[21]  Ambure, P., Aher, R.B., Gajewicz, A. and Puzyn, T. (2015) “NanoBRIDGES” Software: Open Access Tools to Perform QSAR and Nano-QSAR Modeling. Chemometrics and Intelligent Laboratory Systems, 147, 1-13.
http://dx.doi.org/10.1016/j.chemolab.2015.07.007
[22]  Todd, M.M., Harten, P., Douglas, M.Y., Muratov, E.N., Golbraikh, A., Zhu, H. and Tropsha, A. (2012) Does Rational Selection of Training and Test Sets Improve the Outcome of QSAR Modeling? Journal of Chemical Information and Modeling, 52, 2570-2578.
http://dx.doi.org/10.1021/ci300338w
[23]  Khaled, K.F. and Abdel-Shafi, N.S. (2011) Quantitative Structure and Activity Relationship Modeling Study of Corrosion Inhibitors: Genetic Function Approximation and Molecular Dynamics Simulation Methods. International Journal of Electrochemical Science, 6, 4077-4094.
[24]  Das, R.N. and Roy, K. (2012) Development of Classification and Regression Models for Vibrio fischeri Toxicity of Ionic Liquids: Green Solvents for the Future. Toxicology Research, 1, 186-195.
http://dx.doi.org/10.1039/c2tx20020a
[25]  Kar, S. and Roy, K. (2011) Development and Validation of a Robust QSAR Model for Prediction of Carcinogenicity of Drugs. Indian Journal of Biochemistry and Biophysics, 48, 111-122.
[26]  Roy, P.P. and Roy, K. (2008) On Some Aspects of Variable Selection for Partial Least Squares Regression Models. QSAR & Combinatorial Science, 27, 302-313.
http://dx.doi.org/10.1002/qsar.200710043
[27]  Indrani, M., Achintya, S. and Kunal, R. (2010) Chemometric Modeling of Free Radical Scavenging Activity of Flavone Derivatives. European Journal of Medicinal Chemistry, 45, 5071-5079.
http://dx.doi.org/10.1016/j.ejmech.2010.08.016
[28]  Roy, K. and Mitra, I. (2011) On Various Metrics Used for Validation of Predictive QSAR Models with Applications in Virtual Screening and Focused Library Design. Combinatorial Chemistry & High Throughput Screening, 14, 450-474.
http://dx.doi.org/10.2174/138620711795767893
[29]  Roy, K., Chakraborty, P., Mitra, I., Ojha, P.K., Kar, S. and Das, R.N. (2013) Some Case Studies on Application of “rm2” Metrics for Judging Quality of Quantitative Structure-Activity Relationship Predictions: Emphasis on Scaling of Response Data. Journal of Computational Chemistry, 34, 1071-1082.
http://dx.doi.org/10.1002/jcc.23231
[30]  Golbraikh, A. and Tropsha, A. (2002) Beware of q2! Journal of Molecular Graphics and Modelling, 20, 269-276.
http://dx.doi.org/10.1016/S1093-3263(01)00123-1
[31]  Tropsha, A. (2010) Best Practices for QSAR Model Development, Validation, and Exploitation. Molecular Informatics, 29, 476-488.
http://dx.doi.org/10.1002/minf.201000061
[32]  Roy, K., Kar, S. and Das, R.N. (2015) Statistical Methods in QSAR/QSPR. In: Roy, K., Kar, S. and Das, R.N., Eds., A Primer on QSAR/QSPR Modeling, Springer Briefs in Molecular Science, Springer, Berlin, 37-59.
http://dx.doi.org/10.1007/978-3-319-17281-1_2
[33]  Roy, K. and Paul, S. (2008) Exploring 2D and 3D QSARs of 2,4-diphenyl-1,3-oxazolines for Ovicidal Activity against Tetranychus urticae. QSAR & Combinatorial Science, 28, 406-425.
http://dx.doi.org/10.1002/qsar.200810130
[34]  Todeschini, R. (2010) Milano Chemometrics. Italy (Personal Communication).
[35]  Pravin, A. (2013) Drug Theoretics & Cheminformatics (DTC) Laboratory, Jadavpur University.
[36]  Partha, P.R., Somnath, P., Indrani, M. and Kunal, R. (2009) On Two Novel Parameters for Validation of Predictive QSAR Models. Molecules, 14, 1660-1701.
http://dx.doi.org/10.3390/molecules14051660
[37]  Roy, K. (2007) On Some Aspects of Validation of Predictive Quantitative Structure-Activity Relationship Models. Expert Opinion on Drug Discovery, 2, 1567-1577.
http://dx.doi.org/10.1517/17460441.2.12.1567
[38]  Singh, P. (2013) Molecular Descriptors in Modelling of TNF- Converting Enzyme (TACE) Inhibition Activity of 2-(2-Aminothiazol-4-yl) pyrrolidine-Based Tartrate Diamides. Indian Journal of Chemistry, 52, 1325-1341.
[39]  Cheng, Z.J. and Zhang, Y.T. (2010) Classification Models of Estrogen Receptor-β Ligands Based on PSO-Adaboost- SVM. Journal of Convergence Information Technology, 5, 67-83.
http://dx.doi.org/10.4156/jcit.vol5.issue2.8
[40]  Fernandez, M., Caballero, J. and Tundidor-Camba, A. (2006) Linear and Nonlinear QSAR Study of N-hydroxy-2- [(phenylsulfonyl)amino] Acetamide Derivatives as Matrix Metalloproteinase Inhibitors. Bioorganic & Medicinal Chemistry, 14, 4137-4150.
http://dx.doi.org/10.1016/j.bmc.2006.01.072

Full-Text


comments powered by Disqus